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(b) 7—-day maximum data
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(a) Daily data (b) 7-day minimum data
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® Nonlinear methods should beat linear
methods when working with:

*weather variables,
®*some seasonal extreme variables,
°*pbut doubtful with seasonal mean variables

* But seasonal extreme variables are noisier
than seasonal mean variables,

°heed robust methods!



Regression methods

Linear regression (LR): vy = > a,;x; + ag
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Kernel methods

Non-adaptive basis fns.: 7 — ? a;j ¢;(X) + ag
Adv.: linear optimization, no local minima.

Disadv.: Many (infinite?) no. of basis fns.

If optimization problem can involve only dot
products like ¢ ' (x")¢(x)

and the dot product given by a kernel
function K 4 (x"Nop(x) = K (¥, x)

T

y = ) op K(xg,x)+ ag
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| _ Ix — xz)||°
Gaussian/RBF kernel K (X, X) = exp 52




Common kernel method:

Support vector machines (SVM) for regression
(SVR) E@

Z=Y " Yobs
Robust error norm E(2)
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Applications in:
*Remote sensing
*GCM
=post-processing &
downscaling GCM
output

*data analysis
=forecasting

etc.



Forecast max. 5-day PRCP in DJF

*Cluster analysis gave 6 regions

Pacific Coast
Cordillera
Eastern Prairies
Arctic

Great Lakes
Atlantic Coast
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® Predictors:
® Quasi-global SST
*N. Hem. 2500
* 6 climate indices (Nin03.4, PNA, PDO, NAO, SC,
EA)
®*Forecast scores
® Correlation
* Willmott’s Index of Agreement
®* MAE skill score

* Skill,, = S.D. of forecasts / S.D. of observ.
CV1 Validation CV1 Training

CV2 Validation CV2 Training



Irieés

Eastern Pra

B R

MLE

R ovr (LIND

SWR (RBF)

i
3
B
—_—
- .
0 — -
a ]
i .
— .
]
o : :
= INC: B
[ .
— -
m “+...- “
L . .
50 Yo
[ | -] [N | =1
L L] L ]
= s <
55434

Lead Time

Lead Time



Pacific coast
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Atlantic coast
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Conclusion

®*Nonlinear methods most suited for weather
and some seasonal extreme variables, but
hot for seasonal mean variables.

*For seasonal extreme PRCP forecasting,
SVR (nonlin.) and SVR (lin.) can beat MLR,
indicating importance of robust error norm.

*SVR (nonlin.) beats SVR (lin.) in eastern
Prairies, but not in Arctic.



