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Typical case:
M                                  <<                N
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• Background (estimation)

• Least squares solution 

• Error in data and background
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4D-Var

� � �T
T 1 1

T

( ) ( ) ,
C

J δ δ δ δ

δδ

− −= + − − = −c Q c H c d R H c d d y Hc

yy

14243 14243

a a a

SIGNAL NOISE
δ δ δ= +c c c

cost function (weighted least squares problem):

optimal solution is contaminated by measurement error:
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error covariance models (weights):

exact solution:
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How to separate

signal and noise?



Observability Matrix in 4D-Var (Johnson et al., QJRMS 2006) 

reformulation of the exact  solution:
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further reformulation using SVD of D:
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separation of signal and noise:



Q. How to compute SVD of D for large problem (OGCM)?:
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DDT is MxM matrix (small enough to perform SVD)

Algorithm

DDT can be constructed indirectly column by column
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D is MxN matrix (too large to perform SVD for OGCM):
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and complicated (you can not write down M matrix for OGCM):
1/ 2 1/ 2

C

−=D R HMQ

A. Solve the problem on a data space 
using adjoint / forward models:



Algorithm

1.construct DDT column by column:
T T 1/ 2

1/ 2

: adjoint equation

: forward equation

: normalized measurement
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2.perform SVD of DDT:
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: convolution
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3.construct the right singular vector:



Test of the algorithm (up to step 2)

quasi-geostrophic model:

• 1.5 layer

• linear
• beta plane

• steady wind stress

• 20km x 20km

observation:

• sea surface height

at 200km x 200km
mesh at day 10

(M=361)

control variables:

• initial potential 
vorticity (N=40000)



Test of the algorithm (preliminary)

Control variables: initial potential vorticity

Error covariance models: 2 2,
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top:       almost all modes
are above noise 

middle: the first 50 modes
are above noise

bottom: entire solution is

meaningless



Summary

• the optimal estimation of a control variables 
in a 4D-Var analysis can be divided to

1. signal (observable mode)

and 2. noise (unobservable mode).
• the algorithm to compute singular values and vectors

of the observability matrix are derived.
• (half of) the algorithm was tested using QG model.

Future work

• implement the algorithm on OPA model (OPAVAR)
• perform statistical test of the error covariance

model against data
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