

Model Study of the Labrador Sea Water Formation and Spreading

Jieshun Zhu, Entcho Demirov

Memorial University of Newfoundland

Outlines

- Motivations
- Model setup
- Interannual and decadal model variability
- LSW spreading
- Conclusions

Motivations

- LSW is an important part of MOC
- There are differences in the spreading time estimated in different studies (Sy et al. 1997; Lavender et al. 2000; Straneo et al. 2003; Yashayaev et al. 2007; Haine et al. 2008)

• Hydrographic condition has changed significanly during the past five decades (Yashayaev, 2007)

Model Setup

Ocean Model

- NEMO ocean model coupled with a sea-ice model (Madec, 2008), implemented by Dr. Dan Wright and his group;

- Spectral nudging (Thompson et al. 2006)

Forcing Data

- NCEP/NCAR reanalysis data (1948-2005) for atmospheric forcing;
- SODA data for the northern and southern open boundaries.

Resolution

- ¹/₄ degree horizontal resolution and 46 vertical levels

Basin

- North Atlatic (6.7N-67N);

Along AR7W Section

Averaged for June-July

Spreading of LSW

- LSW definition (Haine et al. 2008) : $\sigma_{\theta} = 27.74 - 27.80$
- Method: Ideal Passive Tracer Simulation

$$\frac{\partial C}{\partial t} = S(C) - U(x,t) \cdot \nabla C(x,t) + D^{lC} + D^{\nu C}$$

$$C(x,t) - \text{ the tracer concentration per unit volume}$$

$$S(C) - \text{ Source Minus Sink (SMS) term}$$

$$U(x,t) - \text{ velocity}$$

$$D^{lC} - \text{ lateral diffusion term}$$

 $D^{\nu C}$ -- vertical diffusion term

• Experiments:

Ventilated LSWs

8.5*10⁵ km³

1.8*10⁵ km³

Spreading of LSW1993

Spreading of LSW2000

Conclusions

- Ocean model simulated the observed T/S interannual/decadal variability successfully;
- Both LSW1993 and LSW2000 spread in three pathways;
- The residence time for LSW1993 is longer than that for LSW2000;
- The arrival time is different from the peak time. The arrival time for LSW2000 is longer than that for LSW1993.

Thank you !!!