Forced and internally generated 21st century decadal "potential predictability"

G.J.Boer Canadian Centre for Climate Modelling and Analysis (CCCma)

Long timescale climate predictability

- "early days" of *coupled* climate change simulations
- other's interest in *forced signal*
- then, signal "contaminated" with internally generated natural variability "noise"
- but perhaps long timescale variability is *predictable*
- when forcing is weak one can investigate predictability of this *internally generated* component
- but for 21st century we want predictability of both *forced* and *internal components*

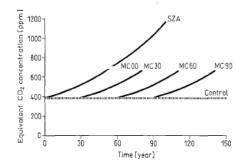
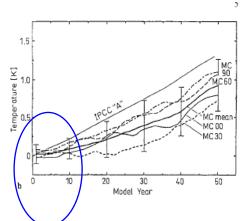


Fig. 1. Schematic diagram of the "Monte Carlo" climate forecasts



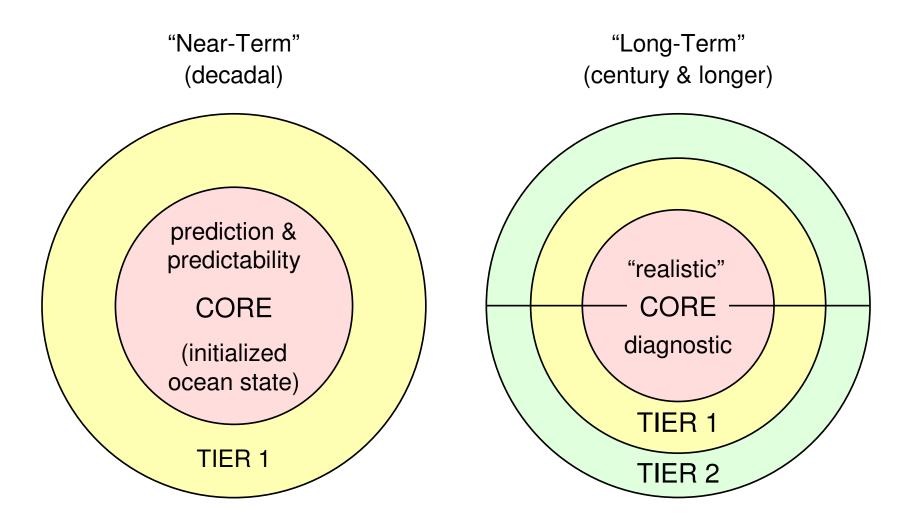
Monte Carlo climate change forecasts with a global coupled ocean-atmosphere model

U. Cubasch¹, B. D. Santer², A. Hellbach¹, G. Hegerl³, H. Höck³, E. Maier-Reimer³, U. Mikolajewicz³, A. Stössel³, R. Voss⁴

- ² Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, Ca. 94550, USA
- ³ Max-Planck-Institut für Meteorologie, Bundesstr. 55, D-20146 Hamburg, Germany
- ⁴ Meteorologisches Institut der Universität Hamburg, Bundesstr. 55, D-20146 Hamburg, Germany

¹ Deutsches Klimarechenzentrum, Bundesstr. 55, D-20146 Hamburg, Germany

CMIP5 Experiment Design



Decadal predictability and prediction

Appeals to "long timescale" processes

- externally forced (GHG+A, volcanoes, solar,)
- internally generated
 - oceanic mechanisms (AMO, SO, ...)
 - coupled processes
 - PDO, AMO, NPMO, PGO, ENSO...
 - modulation of "atmospheric" modes (PNA, NAO, NAM, SAM,)
 - o atmospheric processes (QBO, ...)

How do we determine the *predictability* of the system on decadal timescales?

- Prognostic perfect model predictability studies
 - Griffies and Bryan (1997)
 - Boer (2000)
 - Collins (2002)
 - Collins et al. (2006)
 - Latif et al., (2006)
 - and others
- Diagnostic potential predictability studies
 - Boer (2000, 2004)
 - Pohlmann et al. (2004)
 - Predicate (2004...)
 - Boer and Lambert (2008)
 - Boer (2010)
 - and others
- Investigations of forecast skill
 - Smith et al. (2008)
 - Keenlyside et al. (2008)
 - Pohlmann et al. (2009)
 - Merryfield et al. (2010)
 - CMIP5 (2010+)

Potential predictability: internally generated component

- o decadal, diagnostic, multi-model
- Model control runs (CMIP3) no external forcing
- Annual means of variable X are expressed as

 $X = \mu + \nu + \epsilon$

- μ is the long-term mean
- v is the long timescale *internally generated* component
- ϵ is the short timescale *unpredictable* "*noise*" component
- Associated variances are

$$\sigma^2 = \sigma^2_{\nu} + \sigma^2_{\epsilon}$$

• Potential predictability variance fraction (*ppvf*) is

$$p = \sigma_v^2 / \sigma^2$$

Internally generated multi-model potential predictability

Potential predictability variance fraction

$$p = \sigma_{\nu}^2 / \sigma^2 = \sigma_{\nu}^2 / (\sigma_{\nu}^2 + \sigma_{\varepsilon}^2)$$

in terms of a signal to noise measure

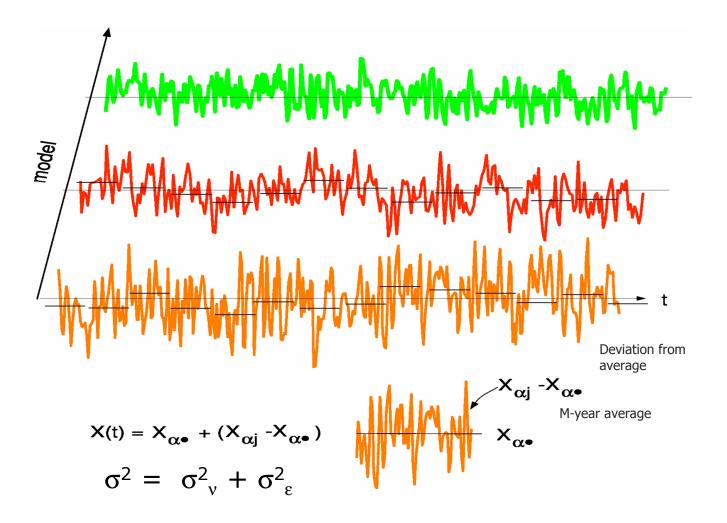
$$\gamma = \sigma_v^2 / \sigma_\varepsilon^2$$
$$p = \gamma / (1 + \gamma)$$

○ *p* is small if signal is *small* or if noise is *large*

• 0 < *p* < 1

- not only existence of signal, however small, but its relative magnitude
- a variance measure (not a correlation like measure)

Internally generated long timescale potential predictability

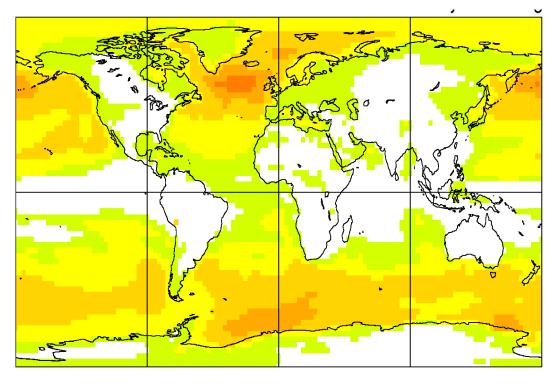


Virtues of multi-model approach

- the "multi-model" is generally the "best model"
 - no individual model "best" in all regards
 - the "*n*-best" models differ with criterion used
 - pooled climate statistics (means, variances, covariances) generally closer to observed
 - applied to seasonal forecasting
 - applied to climate change (Chapter 10, AR4)
- increased the amount of data for statistical stability

Temperature: potential predictability of *internally generated* variability $p_v = \sigma_v^2 / \sigma_v^2$ (%) for *decadal means* (CMIP3 multi-model control runs)

- Ratio of long timescale to total variance
- MME provides stability of statistics: *ppvf* in white areas <2% and/or not significant at 98% level
- Long timescale predictability found mainly over oceans
- Some incursion into land areas but modest *ppvf* (*denominator* is large)



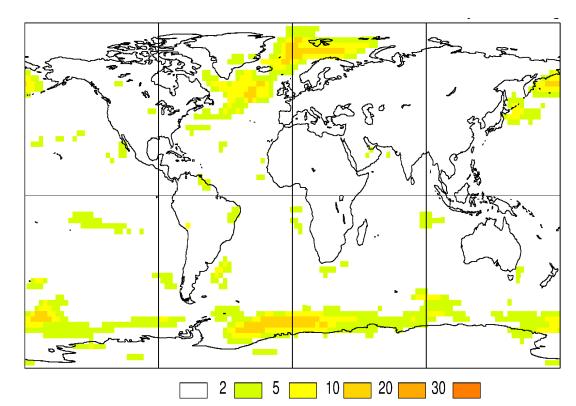
Control simulations

Precipitation: potential predictability of internally generated variability $p_v = \sigma_v^2 / \sigma^2$ (%) for decadal means

-MME provides "some" significant areas of precipitation -Much less potentially predictable than temperature

- Little incursion into land areas

- Precipitation predictability a weakened version of temperature predictability at these timescales



Control simulations

21st Century decadal potential predictability

• Variable now has forced component

 $X = \mu + \Omega + \nu + \varepsilon$

with associated variances

 $\sigma^2 = \sigma^2_{\Omega} + \sigma^2_{\nu} + \sigma^2_{\epsilon}$

- Ω is long timescale *externally forced* variability
 - obtained by fitting 2nd order orthogonal polynomial
- v is long timescale *internally generated* variability
- ϵ is short timescale *unpredictable* "*noise*" variability
- statistics pooled across models
- Potential predictability variance fraction now has two components

$$p = (\sigma_{\Omega}^{2} + \sigma_{v}^{2}) / \sigma^{2} = p_{\Omega} + p_{v}$$

21st century temperature at a point - forced component from 1st decade 1.8 1.6 $X = (\Omega - \Omega_1) + v + \varepsilon$ forced component 1.2 (fitted quadratic) $(\Omega - \Omega_1)$ 1.0 from 1st decade $\Delta \Omega$. 8 . 6 . 4 . 2 o 2 variation about 8 forced component 1.0 -1.2 ο 10 20 30 40 50 60 70 80 90 YEAR $\sigma_1^2 = \sigma_{\Omega_1}^2 + \sigma_v^2 + \sigma_\epsilon^2$ multi-decade $\sigma_{\Lambda^2}^2 = \sigma_{\Lambda\Omega}^2 + \sigma_{\nu}^2 + \sigma_{\epsilon}^2$ next-decade

Forced component

• Potential predictability variance fraction $p = (\sigma_{\Omega}^2 + \sigma_{\nu}^2) / \sigma^2 = p_{\Omega} + p_{\nu}$

o *multi-decade* view of forced contribution

- difference from 1st decade

$$\sigma_{\Omega 1}^{2} = (\Omega_{k} - \Omega_{1})^{2}$$

$$p = (\sigma_{\Omega 1}^{2} + \sigma_{v}^{2}) / (\sigma_{\Omega 1}^{2} + \sigma_{v}^{2} + \sigma_{\varepsilon}^{2}) = p_{\Omega 1} + p_{v1}$$

- next -decade view of forced contribution
 - difference from previous decade

$$\sigma_{\Delta\Omega}^{2} = (\Omega_{k} - \Omega_{k-1})^{2}$$

$$p = (\sigma_{\Delta\Omega}^{2} + \sigma_{v}^{2}) / (\sigma_{\Delta\Omega}^{2} + \sigma_{v}^{2} + \sigma_{\varepsilon}^{2}) = p_{\Delta\Omega} + p_{\Delta v}$$

 both numerator and denominator differ so p components differ depending on treatment of forced component

Estimate statistics from sample variances

$$\hat{\sigma}_{\varepsilon}^{2} = \frac{m}{m-1} S_{\varepsilon}^{2}$$

$$\hat{\sigma}_{v}^{2} = \frac{n}{n-(b+1)} S_{v}^{2} - \frac{S_{\varepsilon}^{2}}{m-1}$$

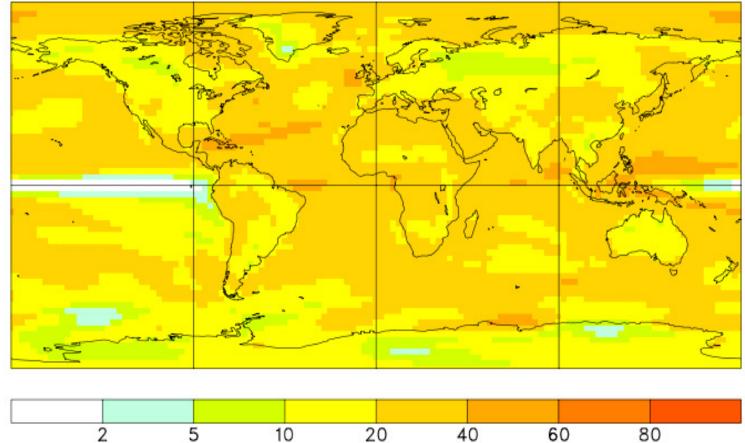
$$\hat{\sigma}_{\Omega 1}^{2} = S_{\Omega 1}^{2} - \frac{d_{1}}{n-(b+1)} S_{v}^{2}$$

$$\hat{\sigma}_{\Delta \Omega}^{2} = S_{\Delta \Omega}^{2} - \frac{d_{\Delta}}{n-(b+1)} S_{v}^{2}$$

- S² are sample variances pooled across models
- m = 10 years in a decade; n = 10 decades in 21^{st} century
- b, d's arise from the fitting polynomial for the forced component
- decadal sample variance is discounted by part of noise variance
- decadal forced variance discounted by part of decadal variance

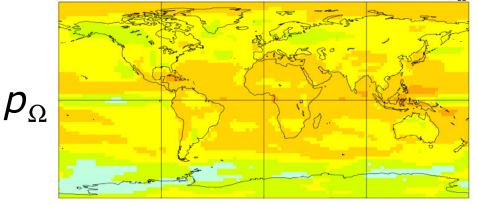
Net potential predictability of temperature for 2010-20 (or "next decade" result generally)

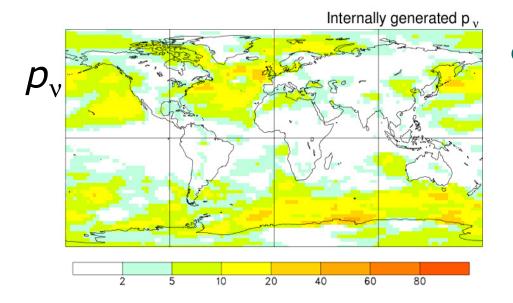
Forced plus internally generated p



Forced component of potential predictability for temperature and *forced component* of temperature change for 2010-20

Potential predictability variance fractions: 2010–20 Forced p_Ω

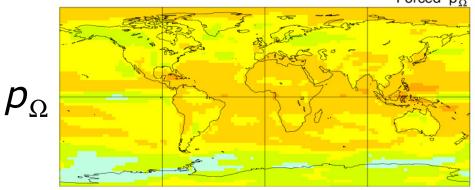




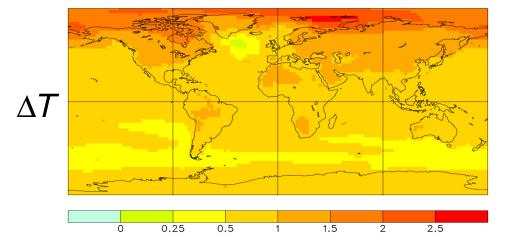
- percentage of total variance over decade
 - associated with forced component
 - associated with internal variability
- p_{Ω} and p_{ν} tend to be inverses of one another so $p = p_{\Omega} + p_{\nu}$ is more uniform than either

Forced component of potential predictability for temperature and *forced component* of temperature change for 2010-20

Potential predictability variance fractions: 2010–20 Forced po



Forced component of temperature change (C) from 2000–10 to 2040–50.



• forced p_{Ω} differs in pattern from forced ΔT

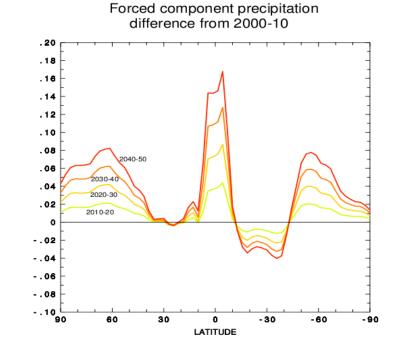
•
$$p_{\Omega} = \sigma_{\Omega}^2 / (\sigma_{\Omega}^2 + \sigma_{\nu}^2 + \sigma_{\epsilon}^2)$$

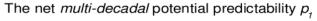
• for $\sigma_{\Omega}^2 => \Delta T^2$

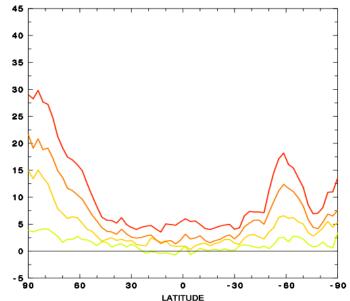
• noise variance σ_{ϵ}^{2} in the denominator discounts ΔT over northern land

• Precipitation

- forced component dominates
- no potential predictability for internally generated component
- *next-decade* p_Ω is small (noise is large)
- multi-decade p_Ω depends on growing forced component

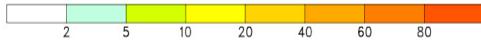






Potential predictability of precipitation

Potential predictability of precipitation: 2020-30 (i.e. for *second* decade) G 0



- due to forced component 0
- noise variance for Ο precipitation is large
- internally generated p_{v} is Ο small as a result
- o only *multi-decade* p_{Ω_1} contributes and then only modestly

The challenges and caveats of potential predictability studies

- to identify the mechanisms associated with regions/modes of predictability
- to assess "potential" vs "actual" predictability
- to investigate predictive *skill* of both forced and internally generated variability

end of presentation