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Motivation and plan

Is there a relationship between model “fidelity” and model “skill”?

CCCma’s AGCM3 (Scinocca et al. 2008)

a method to construct real-time corrections to reduce model
bias is introduced.

two sets of AMIP-type ensemble simulations (“hindcasts”)
with and without bias-correcting terms are discussed.

changes in model co-variability and skill on seasonal time scale
are examined.
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Methodology

Consider a dynamical model:

∂X

∂t
= F (X )

where X represents the model state, F (X ) is the model tendency
(advection, physics, etc.)
The goal is to find a r.h.s. term g

∂X

∂t
= F (X ) + g

that reduces model bias X − X obs.
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Empirical correction

∂X

∂t
= F (X ) + g

DelSole et al. (2008), Yang et al (2008) refer to this approach as
“empirical correction”.

DelSole et al. (2008) consider several strategies for estimating
g . The best strategy is based on 24-hr error tendencies.

The forecast bias is generally reduced (except for U and V).

None of the considered methods consistently improves skill
(may be model dependent). Caveats: JJA only, short 10-yr
runs.
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Relaxation runs

Relaxation runs: 5-member ensemble AMIP-type runs with
AGCM3 by relaxing model solution to ERA interim reanalysis:

∂X

∂t
= F (X )−

1

τ
(X − XR)

where XR is ERA interim reanalysis.

VORT, DIV, TEMP, and SHUM are relaxed.

τ=36hrs for VORT, DIV, TEMP, and τ=72hrs for SHUM.
(for τ=24–36hrs, |X − XR | ≈ |XR1 − XR2|)

Only larger scales are relaxed with full strength (T1-T21).
(Gaussian filter for T22-T63 with half-decay at ≈T35).

Weaker relaxation near the model top above ≈100hPa.

Empirical bias correction:

g = −
(X − XR)

AC

τ
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AMIP-type runs

Control runs: 10-member ensemble of AMIP runs with
AGCM3 for years 1959-2008:

∂X

∂t
= F (X )

Bias-corrected runs: 10-member ensemble of AMIP runs with
AGCM3 by adding the climatological tendency term g :

∂X

∂t
= F (X ) + g
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Z500 bias vs ERA interim, 1989-2008

CONTROL BIAS-CORRECTED

AVG=-13.3M RMS=29.6M AVG= -5.6M RMS=17.1M

D
J
F

AVG=-12.5M RMS=32.9M AVG=-11.1M RMS=19.4M

J
J
A
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Zonal TEMP bias vs ERA interim, 1989-2008

CONTROL BIAS-CORRECTED

AVG=-0.4K RMS=1.8K AVG= 0.0K RMS=0.9K
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Zonal U bias vs ERA interim, 1989-2008

CONTROL BIAS-CORRECTED
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Conclusion 1

The model climatology is improved.



Motivation Methodology Bias (Co)variability Correlation Conclusions

Multivariate normal distribution

Variability distribution on monthly to seasonal time scales is
assumed to be multivariate normal:

“Observation” “Model”



Motivation Methodology Bias (Co)variability Correlation Conclusions

Kullback-Leibler (KL) divergence

Kullback-Leibler divergence (also information divergence,
information gain, or relative entropy) is a non-symmetric measure
of the difference between two probability distributions P and Q.

DKL(P‖Q) =

∫

p(x)log
p(x)

q(x)
dx

Typically P represents the ”true” distribution of data, or
observations. Q typically represents a model distribution.

For two multivariate normal distributions Np(Σp) and Nq(Σq):

DKL(Np‖Nq) =
1

2

(

loge

(

detΣq

detΣp

)

+ tr

(

Σ−1
q Σp

)

− N

)

where Σq and Σq are the auto-covariance matrices.
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DKL, Z500, NH Extratropics, 1959-2008
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DKL, Z500, SH Extratropics, 1959-2008
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Conclusion 2

Interannual co-variability is generally improved.
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Correlation, Z500, 1959-2008
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Correlation, Z1000, 1959-2008
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Correlation, T850, 1959-2008
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Conclusion 3

Skill of seasonal “hindcasts” is modestly improved.
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Conclusions

The presented method reduces climatological biases in
AGCM3.

Interannual atmospheric co-variability is generally improved.

Potential skill of seasonal hindcasts is modestly improved.

It isn’t unreasonable to expect that models with smaller bias
produce more skillful seasonal predictions.

Outlook:

Are results reproducible in AGCM4?

Can a similar approach be implemented in a coupled model?

run-time bias-correcting tendencies are not conservative.
how to bias-correct OGCM?
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