Links Between the Deep Western Boundary Current, Labrador Sea Water Formation and Export, and the Meridional Overturning Circulation

Paul G. Myers and Nilgun Kulan Department of Earth & Atmospheric Sciences University of Alberta

Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)

Fondation canadienne pour les sciences du climat et de l'atmosphère (FCSCA) Edmonton, Alberta, Canada

People. Discovery. Innovation.

Introduction

- Atlantic Meridional Overturning Circulation (AMOC)
- Data
 - Labrador Sea climatology and triad analysis, 1949-1999
 - Spectral nudged modelling experiments
- Labrador Sea Water Formation
 - Volume Rate of Change
 - Instanteous kinematic approach
 - Transport in the Deep Western Boundary Current
- Links to the AMOC
- Summary

Meridional Overturning Circulation

WMO UNEP

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Taken from Holloway, 2003

MOC Variability

Suggestion for Observed Weakening of MOC

Both: Bryden et al., 2005

Climatological Analysis

- Region: 45-70N; 40-70W
- 1/3 degree resolution
- Based on data in MEDS database, 1910-present Temperature and Salinity
- Objective Analysis using Iterative Difference-Correction Scheme
 - Modified by polynomial weighting based on bottom depth
 - Three search radii: 500, 300 and 150 km
 - Vertical Binning
 - Isopyncal Coordinates (46 isopyncal surfaces)

Kulan and Myers, 2009

Climatological Study

- Time varying Triads also produced
 - Triads based on overlapping running means
 - E.g. 1970 uses data from 1969-1971
 - Climatological Data merged with Levitus and/or Lozier climatologies for rest of sub-polar gyre
 - Assimilated into regional model of the Sub-Polar Gyre
 - Technique: Spectral Nudging 10 day damping timescale
 - Mean is controlled but neither annual cycle nor eddies significantly damped
 - Allows model to adjust T and S fields to fix mis-matches between velocity and density fields
 - Each year run repeatedly for 5 years to allow for 'nudging to stablize'
 - Also, a 5 year run with the long-term mean climatology and perpetual year forcing run

30 m salinity

Kulan and Myers, 2009

Labrador Sea Water Formation

$$S(\mathbf{x},t) = -\left[\frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}h)\right],$$

$$S(\boldsymbol{\sigma},t) = -\int_{A_{S}(\boldsymbol{\sigma},t)} \left[\frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}h)\right] dA,$$

$$\overline{S}(\boldsymbol{\sigma}) = -\frac{1}{\Im} \int_0^{\Im} \left\{ \int_{A_S(\boldsymbol{\sigma},t)} \left[\frac{\partial h}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{u}h) \right] dA \right\} dt,$$

Subduction based on:

- I) ML retreat
- II) Convergence of horizontal transport into ML
 - S > 1 subduction
 - S < 1 entrainment into ML
 - Later transferred into interior through deep convection

Mean: 1.2 Sv (27.74-27.82) and 0.8 Sv (26.68-27..74)

Export in DWBC at 53N

Dengler et al, 2006

Greenland

1996-1999

Export in DWBC at 53N

Mean Exp.

Dengler et al, 2006

Long-term mean based on inter-annual experiments

Historical Reanalysis MOC

Depth Space

Density Space

Maximum MOC Variability

Depth space

Summary - MOC

- Variability well correlated in depth and density space
- Potential decline in depth space
 - But NOT in density space
- MOC correlated with LSW volume, with 0.3-0.5, maximum at a lag of 6-7 years
- MOC correlated with LSW formation (kinematic approach), with 0.3-0.4, max at a lag of 4-6 years
- MOC correlated with LSW transport in DWBC at 53N, with 0.3-0.5, max at lags of 7-8 years
- MOC strongly correlated with DWBC transport at 53N
 - 0.69-0.77 in depth space at short lags
 - 0.45-0.63 in density space at short lags
 - Difference related to the fact a decline not seen in density space??

Final Summary

- Long term LSW formation rates 1-2 Sv
 - Periods of strong formation inter-spaced with little formation
- Apparent decline in DWBC strength with time
- Much variability, but no change in LSW transport
- LSW Variability does impact the MOC and its variability
- But DWBC variability had a bigger impact on MOC variability
- Decline in DWBC strength over 1949-1999
- MOC Decline over same period ????
- Results need a full uncertainity/error analysis to be robust