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Introduction Background: variations in incremental 4D-Var formulation

(tangent linear) Constraints:

Purpose of this study
To understand the connections among three 4D-Var formulations written
on the three vector spaces (see Figure 1)

Control parameters, model state and data spaces are three key vector spaces 
on which a 4D-Var data assimilation system is constructed. Lorenc(2003) 
showed that the 4D-Var on the control vector space can readily be interpreted 
as cost function on the state vector space. The recent study by El Akkraoui 
and Gauthier (2010) revealed a clear connection between cost functions for 
the state vector space and data vector space and its consequence on the 
performance of the descent algorithms. In this study, we summarise the inter-
connections among the cost functions, their gradients and Hessian matrices of 
a 4D-Var system written in the three vector spaces.

4D-Var system in incremental formulation can be expressed in a simple 
vector-matrix form as   

Two variations of 4D-Var formulations can be derived from equation (1)    

where, S=GQGT=HPHT

x=Mc : forward model
 y=d−Hx :observations

⇔  y=d−Gc

where,
d=y−Gcb , G=HM

where,
Q=〈ccT〉 , R=〈 y yT〉

J [c ]=1
2
cTQ−1c1

2
Gc−dTR−1Gc−d

ca=QGTGQGTR−1d (1)

III. 4D-Var on data vector space (PSAS):

L[w ]=1
2
wTSR−1w−wTd

wa=SR−1d

II. 4D-Var on state vector space:

I [x ]=1
2
xTP−1 x1

2
Hx−dP−1H x−dT

xa=PHTHPHTR−1d

Cost function:

Exact solution:

I. 4D-Var on control vector space:

Cost function:

Exact solution:

Cost function:

Exact solution:

:representer matrix (Bennett, 1992)

where, P=〈xxT〉=MQMT

Inter-connections of the three variations of 4D-Var formulations can be best
understood in the following forms

J [c ]=1
2
c−caTAJc−ca

1
2
dTAL

−1d

I [x ]=1
2
x−xa TAIx−xa

1
2
dTAL

−1d

L[w ]=1
2
w−wa TALw−w

a −dTAL
−1d

Inter-connections among the 4D-Var formulations I

Cost function:

Gradient:

∇ c J [c]=AJc−ca

∇ x I [ x]=A Ix−xa

∇w L [w ]=ALw−w
a

where, AJ=Q
−1GTQ−1G , AI=P

−1HTP−1H , AL=SR

There are following relationships among the Hessian matrices:

GQAJQG
T=HPAJPH

T=ALR
−1AL−AL

(2a)

(2b)

(2c)

(3b)

(3a)

(3c)

(4)

From equations (2),(3),(4) and (5), inter-connections among the three 
variations of 4D-Var formulations can be established:

Inter-connections among the 4D-Var formulations II

J [ca]=I [xa]=−L[wa]

J [w ]=I [w ]=1
2
∥∇w L[w ]∥R−1

2 −L[w ]

GQAJ
2QGT=AJR

−1GAJR
−1G T (5a)

HPAI
2PHT=AIR

−1HAIR
−1HT (5b)

∥∇ cJ [w ]∥
2=∥GTR−1∇w L[w ]∥2

∥∇ x I [w ]∥2=∥HTR−1∇wL[w]∥2

where,
∥b∥2=bTb, ∥b∥R−1

2 =bTR−1b

The above relationships are equal to El Akkraoui and Gauthier (2010) when
the formulations are preconditioned.

Figure 1. Three vector space 
in 4D-Var formulation: control 
vector space (c), state vector 
space (x) and data vector 
space (y).
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