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Introduction

Sigma-point Kalman Data assimilation: A dynamical state-
- space estimation problem

Simulations with
Lorenz model

A Reduced SPKF

0.=1F1 (91«—13 Qk—l)

Summary & Conclusion

Y, =h (0, 71)
where 8, represents the system state vector at time k, f(-) is the nonlinear function

of the state, q, is the random (white) model errors, 1, is the measured state, h(-) is

the measurement function, and 7, is the zero-mean random measurement noise.
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Sigma-point Kalman filter

NS

Introduction

Sigma-pointkaiman = « The SPKF algorithm has been successfully

filters implemented in many areas like robotics, artificial
Simulations with intelligence, natural language processing, and global
- positioning systems navigation.

A Reduced SPKF

Summary & Conclusion |«  The SPKF makes use of a reformulated Kalman gain K
and “chooses” the ensemble deterministically in such
a way that it can estimate the statistical moments of the
nonlinear model accurately; in other words, the
forecast error covariance equation is computed using
deterministically chosen samples, called “sigma-
points”.

Ref: (Nargad Magnus et al. 2000; Ito and Xiong 2000; Lefebvre et al. 2002;Wan and
Van Der Merve 2000; Haykin 2001; Van der Merwe 2004, Julier et al. 1995; Van der
Merwe and Wan4 April 2001,M;).
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Kalman gain & Covariance update

Introduction eq uations
Sigma-point Kalman
fiiters Standard equations:
Simulations with
Lorenz model K. = P- HT [HP_ HT n R} -1
A Reduced SPKF k O Ok
Summary & Conclusion Pt‘?k — (I — KAH)
Alternative forms:
1
I{i o jjeklk}]EL

ng :P;L _KﬁpkahT

=» cross-covariance between the state and observation errors

P

IR

P b =» error covariance of the difference between model and observations

No linear assumption for measurement function.

Ref: (Simon, D. 2006, Gelb, A. 1974)
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SP-Unscented Kalman filter

Unscented transformation (Julier et al. 1995; Julier 1998;

Introduction

Sigma-point Kalman Wan and Van Der Merve 2000; Julier 2002).
filters
Simulations with - A\
— LD GIL
Lorenz model KXo = 0y, why o= T+ N (2.42)
A Reduced SPKF )
X;r:,;=ﬂk+(-,vf{ﬂ-+,lj ng) i=1,....L wé“léﬁﬁt{l—azjtﬁ}
Summary & Conclusion i
(2.43)
ki) (e 1
X-;:i:Hk_(MI{L._FA}PHi‘)é i=(L+1),....2L ! :':n,;}:':Z(L_FA} i=1,...,2L
(2.44)

A= a?(L+ k) — L is a scaling parameter.

The sigma-point vector is then propagated through the nonlinear model
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SP-Central Difference KF

* In SP-CDKF the analytical derivatives in EKF are

Introduction

Sigma-point Kalman

filters replaced by numerically evaluated central divided
Simulations with differences, based on Sterling’s polynomial
Lorenz model . -
interpolation.
A Reduced SPKF
Summary & Conclusion
n im) 62 — L
-X.F., 0= 9;; f{,b — 52
) 1) 1
X:?:ﬁ'h—l—(wézPh)_ i=1 L w0 )_W i=1,..., 2L
_ - 1
X;?:SL_(\.F{S'EPQR) i=(L4+1)...., 2L ;'LCI:I—W i=1,..., 2L
() 021
i 154 i=1,..., 2L

where & is the central difference step size

Ref: (Ito and Xiong 2000; Ngrga°d Magnus et al. 2000; Lefebvre et al. 2002).
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SPKF and EnKF

Introduction » We can extend the sigma-point approach to ensemble Kalman filter
and formulate the ensemble Kalman filter as a “general sigma-point
Kalman filter” without a specific selection scheme.

Sigma-point Kalman

filters
Simulations with we can consider each perturbed initial state as a EnKF sigma-point.
Lorenz model 1
Xim = Okm + €km “TIM—D
A Reduced SPKF o ‘
Now the ensemble forecast error covariance given by
Summary & Conclusion ",
1 - — —\ T
F— p— ~ E f I f f
P = Pﬂk — M — 1 ('X.F:.,I??, o 'X.P.:) ('Xﬁ:,m T ‘X&)
- m=1
M T
_ E I ‘N f N
= w ('xk,m o 9#: ) ('x.ii:,m 915: )
m=1

where

m=1

* In other words the forecast sigma-points in SP-UKF and SP-CDKF and
other Sigma-point Kalman filter algorithms are actually specific
ensembles conditioned on the specific selection schemes
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Lorenz '63 model

Introduction

/ . dr
Sigma-point Kalman _ _ T
— —=o(y—x)+
filters dt (v ) +4
Simulations with dy "
Lorenz model ar =pr —Yy —x2+q°
A Reduced SPKF
dz ‘ ) 3
Summary & Conclusion It =xy — Bz+4¢q

True value: integrate the model over 4000 time steps using
prescribed parameters and initial conditions.

Observation: true value plus normal distribute noise;

Experimental conditions are the same as those used by Miller (Miller, 1994) and Evensen
(Evensen 1997)
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Lorenz model: state estimation
Introduction
S i 1o Observation and initial conditions: True values plus normal
ﬁ"qe > > distributed noise. The assimilation interval is 25 time steps.
Simulations with N(O’*/E)
Lorenz model 201! . . . . . . =
A Reduced SPKF or - , | |
1 1 O I
Summary & Conclusion sr I i l ! T :
ro0 . 17X "i’ , . ' i‘ r Friy + M
. AN i ‘ \[ Vil A T
1 TRl IR
15| UKF ! - ]
+ Obs +
—20r Trutla 1 | 1 1 1 1 ]
20 id) T T T T T T T =
15 -
10+ | e | f | | i
oo 1 A O
T 0-% -~ " + AW | 5 )y v Y -\ J
-5 [ iyl I =
o | 1 ”!” | ARilE
_15H CDKH _
+ Obs +
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500 1000 1500 . 2000 2500 3000 3500 4000




U B UNIVERSITY OF
NORTHERN BRITISH COLUMBIA

7 1 .
An “unfair” comparison!
Introduction
EnKF with 19 members
Sigma-point Kalman @
filters 20+ : : ' ' I ]
Simulations with 1o I T HYIRE + J ]
Lorenz model 10 1A (Y i l o ‘ |
A Reduced SPKF vl . I”H.}"‘J \‘_“ Iy J"'U
Summary & Conclusion -5 i ‘1 'L,t,!i ALy A " ¢ ‘ | ‘ -
~10H l‘ ,Hl‘ | | i '\ |
enkf ' | ] | Ay |
15+ obs + B
—20 Trutle 1 1 1 1 1 1 ]
500 1000 1500 . 2000 2500 3000 3500 4000
Assimilation Method Computation Time (in Seconds) | RMSE
EKF 37.04 1.812
EnKE (with-+666emsembies) [ 7143757 1 OR7
EnKE (with 19 ensembles) 132.77 6,123 —
SP-UKF 133.91 1.640
SP-CDKF 90.42 1.592
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Introduction

Sigma-point Kalman

filters noise N(0,/20).
Simulations with

Lorenz model Assimilation interval
A Reduced SPKF is 40 time steps.

Summary & Conclusion

+
i o
10 l i J 411 i | | ! |=ir |
. ' -I; L 1| J T rl f | | ‘l ._:l
* it | R 1|' AT A | | | T Al
—1:' J 1'[ |'.|“] | Iln.
+
= CDKF
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Parameter estimation

Introduction
A
Sigma-point Kalman A=A+ q_y
filters
: : : . A
Simulations with P, = f {ka A.ﬂ;) + 7

Lorenz model

A Reduced SPKF where f{-) is the nonlinear measurement model given by the Lorenz equations

Summary & Conclusion A 15 the parameter vector which constitutes the dynamical parameters

15 .['a] T T T T T T T T T E b] T T T T T T T T T
UKF 12| CDKF |
= m wTrye = m = True
10 .
10 {
E H -
] 7
E H -
5 2| i
1 P - - m
M ——— == 2 [l ]
of 1 of g
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Tirme Steps. Time Steps
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Parameter estimation

Introduction Simultaneous estimation of two parameters:
: e Initial parameters = true parameter plus normal distributed noise of
RpeTic-polniieanan covariance 100.
filters L o
30 B 30 ¢ ]
Simulations with Pt
Lorenz model = 1 % 1
A Reduced SPKF =T 120 1
b == UKF 1 =l CDKF »
Summarv & CO"C'USiOI’I ':; m o o mm Trusp '__‘; = mm mm Trucp
10 UKF 8 E 10k CDRF @&
=L = o omm Trus i - e omm Trus#
i "l -—
400 800 1200 1800 2000 2400 2800 3200 3&00 4000 400 &00 1200 1800 2000 2400 2800 3200 3&00 4000
Time Steps Time Steps
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Kivman, G.A. 2003: Se%Jentlal parameter estimation for stochastic system,
Nonlinear. Process. in eophysics, 10, 253-259.
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A “big” drawback of SPKF

Introduction

Sigma-point Kalman

fil . . . .
o il  For an L-dimensional system, the number of sigma-points
Simulations with . . - .

Lorenz model required to estimate the true statistics is 2L+1

A Reduced SPKF

Summary & Conclusion | « D| +1 sigma-point integration is impossible, when the
dimension system is of the order of millions as happens
often in GCMs
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A Possible solution — reducing sigma-points

Introduction

Sigma-point Kalman Xio = 04 ™) —
filters

. A
Simulations with Xis =0k + (1f{£-+}t] Pa,,)_ i=1,....0 ) = Ty (1—a®+5)

T i T T T 2 I:L I .,}L) B B

A Reduced SPKF

Summary & Conclusion

A subspace approach with sigma-points:

Lermusiaux et. al. [Lermusiaux, 1997; Lermusiaux and Robinson, 1999]
proposed a method to reduce error space, called the Error Subspace
Statistical Estimation (ESSE).

Theoretically the most important sigma-points should be chosen based
on reduced rank approximation. We have used principal component
analysis (PCA) to identify the most important sigma-points.
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A Reduced SPKF - (Lorenz 96 model: 36 variables)

Introduction (a)
101 1 —
Sigma-point Kalman with Full Sigma- j ++ ] y ] ‘Jl | | ‘ |
: : st/ A 4 i / |op p W |
filters points (241) A | J A A 0 '1/ Al
Simulations with IR AR AR (AT | V]
-5 | v ukf i
Lorenz model [ v obe
A Reduced SPKF s,
Summary & Conclusion (k)

o i ]
with reduced shooma A & 4 W N X ‘ l |
Sigma-points (20) * ;J\]‘"\JU»- ! -'*-”-‘r'l !v'\!g.l 1y *\ ."; Wi, \ i\..,,*\.
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A Reduced SPKEF - (Lorenz 96 model: 960 variables)

Introduction . =
ukf +
Sigma-point Kalman with full Sigma- - .Ih. o A boF M i | .
filters points (5761) xt s A ¥ \ . F ] ’ j'l = r' - |\ _
’ . I ! it h' I h 0 A 1 '-.i' [ 1) A w2
Simulations with oL FhA Y { \ - I YA I'
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Time Steps
Summary & Conclusion b)
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Conclusion

Introduction

Sigma-point Kalman

filters - The SPKF is a technique for a derivative-less optimal
sitBationsgi estimation using a deterministic sampling approach
Lorenz model that ensures accurate estimation of error statistics.

A Reduced SPKF

Summarva conclusionn, °© 1he SPKEF is capable of estimating model state and
parameters with better accuracy than EKF and EnKF
for strong nonlinear systems.

« The SPKEF is practically difficult for high dimensional
systems. A possible solution is to reduce the
number of sigma-points by “selecting a particular
set of sigma-points”.
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Thank You.
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