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Sigma-point Kalman filter

• The SPKF algorithm has been successfully 
implemented in many areas like robotics, artificial 
intelligence, natural language processing, and global 
positioning systems navigation.

• The SPKF makes use of a  reformulated Kalman gain K
and “chooses” the ensemble deterministically in such 
a way that it can estimate the statistical moments of the 
nonlinear model accurately; in other words, the 
forecast error covariance equation is computed using 
deterministically chosen samples, called “sigma-
points”. 

Ref: (Nørgad Magnus et al. 2000; Ito and Xiong 2000; Lefebvre et al. 2002;Wan and 
Van Der Merve 2000; Haykin 2001; Van der Merwe 2004, Julier et al. 1995; Van der
Merwe and Wan4 April 2001,M;).
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Kalman gain & Covariance update 

equations

Standard equations:

Alternative forms:

No linear assumption for  measurement function.

� cross-covariance between the state and observation errors

� error covariance of the difference between model and observations

Ref: (Simon, D. 2006, Gelb, A. 1974)
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SP-Unscented Kalman filter
Unscented transformation (Julier et al. 1995; Julier 1998; 
Wan and Van Der Merve 2000; Julier 2002).
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SP-Central Difference KF
• In SP-CDKF the analytical derivatives in EKF are 

replaced by numerically evaluated central divided 
differences, based on Sterling’s polynomial 
interpolation. 

Ref: (Ito and Xiong 2000; Nørga°d Magnus et al. 2000; Lefebvre et al. 2002).
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SPKF and EnKF
• We can extend the sigma-point approach to ensemble Kalman filter 

and formulate the ensemble Kalman filter as a “general sigma-point 

Kalman filter” without a specific selection scheme. 

• In other words the forecast sigma-points in SP-UKF and SP-CDKF and 

other Sigma-point Kalman filter algorithms are actually specific 

ensembles conditioned on the specific selection schemes
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Lorenz ’63 model

Experimental conditions are the same as  those used by  Miller (Miller, 1994) and Evensen
(Evensen 1997)

True value:    integrate the model over 4000 time steps using         

prescribed  parameters and initial conditions.

Observation:   true value  plus normal distribute noise; 
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Lorenz model: state estimation

Observation and initial conditions:   True values  plus normal 

distributed noise. The assimilation interval is 25 time steps.
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EnKF with 19 members
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Assimilation interval 

is 40 time steps.
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Parameter estimation
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Parameter estimation
Simultaneous estimation of two parameters:
Initial parameters =  true parameter plus normal distributed noise of 
covariance 100.  

Kivman, G.A. 2003: Sequential parameter estimation for stochastic system, 
Nonlinear. Process. in Geophysics, 10, 253-259.
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A “big” drawback of SPKF

• For an L-dimensional system, the number of sigma-points 
required to estimate the true statistics is 2L+1

• 2L+1 sigma-point integration is impossible, when the 
dimension system is of the order of millions as happens 
often in GCMs
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A Possible solution – reducing sigma-points

A subspace approach with sigma-points:

Lermusiaux et. al. [Lermusiaux, 1997; Lermusiaux and Robinson, 1999] 

proposed a method to reduce error space, called the Error Subspace 

Statistical Estimation (ESSE).

Theoretically the most important sigma-points should be chosen based 

on reduced rank approximation. We have used principal component 

analysis (PCA) to identify the most important sigma-points.
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A Reduced SPKF - (Lorenz ’96 model: 36 variables)

with reduced 
Sigma-points (20)

with Full Sigma-
points (241)

with EnKF of 
20 members
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A Reduced SPKF - (Lorenz ’96 model: 960 variables)

with reduced 
Sigma-points (200)

with full Sigma-
points (5761)

with EnKF of 
200 members
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Conclusion

• The SPKF is a technique for a derivative-less optimal 
estimation using a deterministic sampling approach 
that ensures accurate estimation of error statistics. 

• The SPKF is capable of estimating model state and 
parameters with better accuracy than EKF and EnKF
for strong nonlinear systems.

• The SPKF is practically difficult for high dimensional 
systems. A possible solution is to reduce the 
number of sigma-points by “selecting a particular 
set of sigma-points”. 
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Thank You.
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