Improving seasonal forecast skill using a post-processing method

XiaoJing Jia¹, Hai Lin² and Jacques Derome¹

¹McGill University ² Environment Canada

CMOS 2008

Outline

- 1. Motivation
- 2. Models and data
- 3. Post-processing method
- 4. Forecast skill before and after the post-processing
- 5. Summary

Motivation

- Main source of forecast skill beyond a few weeks
 - external forcing such as SST anomalies
 - response to external forcing is biased and model dependent

• Previous results

- Lin et al. (2005): Z500 (DJF)
- Lin et al. (2008): Canadian precipitation (DJF)
- How about other variables? seasons? areas?

Models and data

- Historical Forecasting Project (HFP2)
- Four models used in the HFP2
 - a) 2 climate models: GCM2 and GCM3b) 2 NWP models: SEF and GEM
- For each model, 10 members and four-month forecasts
 - JFMA, FMAM ... DJFM (1969 2001)
- The SST
 - SST anomaly of the previous month was persisted through the forecasts
 - added to the time-dependent climatological SST

Models and data

- Here focus on:
 - Ensemble-mean of the 10 model integrations
 - forced signal
 - Average of first 3 months
 - Variables : SAT, precipitation
 - Domain : North America
 - Verification data: CRU TS 2.1 dataset

Post-processing method

- SVD analysis
- use: the SST anomaly and the predicted Z500
- expansion coefficients of the Z500: $C_1(t)$, $C_2(t)$ and $C_3(t)$
- For each grid point in space, the statistical model is:

$$T_o(t) = a_1 C_1(t) + a_2 C_2(t) + a_3 C_3(t) + \epsilon$$

<u>Observed</u> variable of

From predictions

interest

Post-processing method

• For the forecast year

After the dynamical forecast is done

$$T(t_f) = a_1 C_1(t_f) + a_2 C_2(t_f) + a_3 C_3(t_f)$$

GCM3

Original forecast skill (SAT)

DJF

JJA

MAM

SON

Forecast skill before and after the post-processing (SAT - SON)

Original forecast skill (SAT - SON) for four GCMs

SEF

Forecast skill after the post-processing (SAT - SON) for four GCMs

GCM3

Forecast skill of the post-processed forecasts by SVD1 or SVD2

Percentage area of significant skill (precipitation)

Precipiation skill, percentage area of skill greater than 0.3

<u>Summary</u>

• <u>SAT</u>

- The original forecast skill is at a minimum in SON over North America
- Significant improvement of the forecast skill in SON was achieved over north-eastern Canada and south-western United States
- The post-processed forecasts are quite consistent among the GCMs
- The improvement of the post-processed ensemble forecasts benefit mainly from the second SVD mode.

<u>Summary</u>

Precipitation

• For entire North America

The post-processing degraded the forecasts in OND and NDJ but improved them in MJJ through SON according to the percentage of area with significant skill

• For Canada

8 of the12 "seasons" were improved to some degree

Forecast skill after the post-processing (SAT)

JJA

SON

Forecast skill before and after the post-processing for OND (SAT)

Original Forecast skill (precipitation)

DJF

JJA

MAM

Forecast skill after the post-processing (precipitation)

0.3 0.4 0.5 0.6

JJA

SON

Forecast skill of the weighted forecast (precipitation)

🐯 McGill