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State and Parameter Estimation

Let x and y be true ocean state and observation vectors, and

€ a vector of uncertain parameters of covariance of x. The
posterior pdf of state and parameters given observations is

p(x,@1y)e< p(ylx)p(x|6)p(6)

Under the Gaussian error assumption, maximizing the
posterior pdf is the same as minimizing L wrt x and &

J=(y —Hx)TR_1 (y—Hx)+(x, —x)TB_l(xb —X)
L(x,6) <logl B(6)|+J(x,0)—2logp(6)

Online estimation of & similar in principle to Dee (1995).



Features of the Scheme

Extended version of 3DVar.

Physical constraints used to give B matrix
that is physically realistic, state dependent,
and easier to deal with computationally.

Second minimization gives state dependent
parameters of B.

Parameters estimated by maximizing the joint
rather than marginal pdf (as in Dee, 1995).



Observed Sea Level and
Dynamic Height From Argo
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« Anomalies

- Colocated data
« RL at 1160m

e Correlation is 0.75,
slope close to 1

» Simple physical
balance
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» Scatterplots of T and S
at different depths

» ~55.2W, 38.4N

« Complex, depth
dependent structure

 Lines show Yashayaev
climatology

« Shows importance
of vertical advection in
at depth



Modelling Uncertainty
in the Background State

Motivated by these physical balances, assume

T =T, 6-0T,/0z5, + &,
S=S,-0S, /9&, + &
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Builds on: Cooper and Haines (1996), Troccoli and Haines
(1999), Haines et al. (2006), Ricci et al. (2005), Weaver et

al. (2006)



Parameterization of B

Physical constraints give state dependent transformation
from original to auxiliary variables. Thus B can be written as
function of covariance matrix of auxiliary variables.

Assume
By =Bpp ©® (Byg © Byy )¢, ¢
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Constructing an Idealized B Matrix

Assume xi are uncorrelated with separable (x,z) covariance:

Background Temperature Correlation between T(x,z) and T(0,=700)
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North Atlantic Example

» POP ocean model, 1/3 degree, 23 levels.

» Spectrally nudged to Yashayaev monthly climatology.
» Daily atmospheric forcing from NCEP reanalysis.

» Assimilate Argo and altimeter data, 2003-5.

» Vertical gradient of background is linear combination of
climatology and forecast.

» Uncertain covariance parameters (theta) are horizontal
length scales and variance of the xi variables.



Time Variation of Parameters

Bpp = 7:C" exp( —r°Lp?)C
Buy = 72C" exp( —r’L3y*)C
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Typical Snapshot of Sea Level
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Based on 24

monthly forecast
runs (each 60d)
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Summary

v New scheme is computationally efficient (adds 30%
to run time and memory) and has useful skill.

v" Second minimization allows background error
covariance matrix (B) to change with state.

v Online estimation of B gives scheme robustness and

flexibility. Computationally feasible because joint
posterior pdf maximized rather than marginal.

v Reasonable parameters estimated every 2 days in
the North Atlantic example.

v Forecasts improved in Gulf Stream region by
allowing covariance parameters to change with time.

v Implemented in NEMO and evaluation underway.



