Difficulties associated with data assimilation for a coupled oceanatmosphere system

Pierre Gauthier ⁽¹⁾

Sergey Skachko ⁽¹⁾, Monique Tanguay⁽²⁾, Jean-Marc Bélanger⁽²⁾

⁽¹⁾ Université du Québec à Montréal (UQAM), Meteorological Research Division^{) 2(} Environment Canada, Dorval (Québec)

Acknowledgments: Stéphane Laroche, Michel Roch, Simon Pellerin, Judy St-James, Pierre Koclas, Lubos Spacek, François Roy, Greg Smith

Introduction

- The project is concerned with the accurate estimation of global circulation with a coupled ocean-atmosphere data assimilation system;
- The objectives of the coupled framework:
 - to improve the quality of forecasts from the short to seasonal and interannual timescales;
 - Study mixed layer processes in ocean and atmosphere;
 - Take into account sea-ice interaction with the atmosphere;
- Project is cast to be applicable to real measurements
 - Comparison to observations permits a detailed validation of the coupled system
 - Lead to model improvements that improve medium-range forecasts and climate simulations (Rodwell and Palmer, 2007)

Coupled ocean-atmosphere system

NEMO ocean model

- global configuration ;
- 1x1 resolution (¼ x ¼ º);
- 51 vertical levels ;
- LIM sea-ice model ;
- *3D-Var data assimilation;*

GEM atmospheric model

- global configuration operational at CMC;
- $\frac{1}{2} x \frac{1}{2} e^{\circ}$ resolution;
- <u>4D-Var incremental data</u> <u>assimilation with</u> <u>parameter estimation</u>

Coupling model

Objectives of Data assimilation

- Data assimilation is driven by the short-term forecast from the coupled model
 - maintains the model forecast close to observations;
- Assimilation can be used to estimate
 - Initial conditions of the atmosphere and ocean
 - model parameters for heat, momentum and humidity fluxes between the ocean and the atmosphere;

2009-2010 Work plan

- Implementation of the parameter estimation approach into the 4DVar-GEM system
 - To examine the ocean and atmosphere forecast quality:
 - Impact of the improved atmospheric forcing on the ocean mixed layer depth and dynamics;
 - Ocean feedback (SST, sea-ice distribution, fluxes) to the atmosphere
- Update to the coupled 4DVar-GEM-NEMOVar data assimilation system

Requirements

- A coupled model demands high-quality estimation of air-sea fluxes consistent with surface measurements and model physics;
- Surface fluxes remain one of the most important source of model error:
 - Bulk aerodynamic formulae contain large uncertain-ties in the transfer coefficients;
 - Discrepancies between modeled ocean SST and observations;

Difference between CONCEPTS forecasts and CMC SST analyses

- Produce weekly 10d forecasts using ORCA025
- Important differences from CMC SST analysis can be seen
- Differences from PSY3V2R2 also present...

CONCEPTS - CMCSST for day 10 Average of forecasts from 20090520 to 20090819

(Greg Smith, François Roy)

Environnement Canada

t Environment Canada

GEM 4D-Var data assimilation system with parameter estimation

• Estimation problem is expressed as the minimization of the cost function

$$J(\mathbf{X},\mathbf{p}) = \frac{1}{2} (\mathbf{X} - \mathbf{X}_b)^T \mathbf{B}_X^{-1} (\mathbf{X} - \mathbf{X}_b) + \frac{1}{2} (\mathbf{p} - \mathbf{p}_b)^T \mathbf{B}_p^{-1} (\mathbf{p} - \mathbf{p}_b)$$

Augmented state vector :

 \mathbf{X} = [p, q, u, v, T], \mathbf{p} = [C_D, C_E, C_H, E - P]

Characteristics of the assimilation

- 4D-Var assimilation for the atmospheric component only
 - Temperature observations near the surface will contribute to the estimation of the parameters (ships, buoys, etc.)
 - Ad-hoc error statistics for the parameter C_E : constant variance with homogeous and isotropic Gaussian correlations (L_c = 200 km)
- SST used is that provided by a separate NEMO integration
- Resolution of the atmospheric model is ~50 km
- Assimilation over a period of 4 days
- Preliminary results

4DVar analysis parameter increments: CE

4D-Var analysis increments.

Improvement on GEM forecasts

Corrected surface fluxes

Current status

- Parameter estimation scheme has been implemented within GEM-4DVar atmospheric data assimilation model;
- Planned to introduce the coupled GEM-NEMO model in the assimilation suite
 - The coupled model is not yet available
 - Numerous technical issues associated with the coupling and to maintain coherence between the GOAPP and CONCEPTS work plans for the development of data assimilation for a coupled system
 - Coupled model expected to be available in September

Experiments for the coming year

- One-year assimilation with the coupled system with atmospheric assimilation only with and without parameter estimation
 - Drift (bias) problem has been noticed by other groups
 - Assess the ability of parameter adjustment to reduce the bias
- Extensive diagnostics to examine all aspects of the analyses/forecasts of the coupled systems
 - Sugiura et al. (2008) necessity to adjust several other parameterizations linked with surface fluxes

Planification for the next three years

- Proposal to the Québec government
 - to support research on regional climate (linked to the Ouranos consortium)
 - include a sub-project on data assimilation for a coupled ocean-atmosphere system
- The Earth system laboratory
 - a project to provide an Earth system modeling and assimilation facility to the academic community
 - Computing power in Canada is now in universities (Compute-Canada)
 - CLUMEQ-Québec: already installed (~8000 cores)
 - CLUMEQ-Montréal: available to users in 2011 (>18,000 cores, 2.8 Pb disk space)
 - GEM and NEMO models are already installed
 - Implementation is consistent with that of Environment Canada to be able to benefit from future developments on both sides
 - Current development is already in sync with that at EC
 - Make this available to all the Canadian atmospheric community through joint project with universities

