A High-Resolution Ocean-Ice Model of the Arctic (Sensitivity to Surface Forcing)

Y. Lu, J. Lei, S. Nudds, M. Dunphhy, F. Dupont, C. Hannah, S. Prinsenberg

(Bedford Institute of Oceanography, DFO)

Also in Collaboration with: G. Holloway, P. Myers

Objectives

- Develop ice-ocean models based on NEMO, built on expertise developed from COMDA, CONCEPTS and GOAPP
- Use 2-way nesting technique (AGRIF): pan-Arctic model includes large-scale forcing; high-resolution submodel for focused regions
- Use models to interpret observed changes in Arctic
- Serve applications in regional operational forecasting link to sea-ice and ocean data assimilation
- Serve future applications in coupled regional climate downscaling

Model Configuration

- Outer model for pan-Arctic, 18 km grid spacing, 348×364 grids
- Inner model for CAA and Beaufort Sea, 6 km grid spacing, 349×328 grids
- Maximum 46 z-levels in vertical with partial bottom cells
- Inner model will be extended to include McKenzie Delta and whole Beaufort Sea

Model Setup

- Base on GOAPP debugged NEMO 2.3, sea-ice module LIM2
- Initialization: January T-S from PHC v3.0; sea-ice properties from ORCA025 global simulations
- Open boundary conditions: monthly T, S, velocity and sea level from ORCA025 simulations (Flather radiation for barotropic velocity)
- Surface forcing: CORE Normal Year Forcing (NYF) for spin-up tests; OMIP forcing for sensitivity study
- Runoff climatology; SSS resorting

Two-way Nested Model: Results of High-Resolution Embedding

For Details see presentation by S. Nudds

Pan-Arctic Model Solutions: Spin-up simulations with CORE NYF

Total Ice Area

Seasonal Ice Thickness

Winter

Summer

Annual-Mean Circulation

(colour axis m/s)

50 m depth

400 m depth

Annual-Mean Freshwater Content (upper 1000 m, colour axis m)

PHC Climatology

Model

Pan-Arctic Model: Different Solutions Using CORE & OMIP Forcing

Total Ice Volume

Pan-Arctic Model: Sensitivity Experiments

Experiments	Sea-Ice Drifting	400 m Cyclonic Circulation
All CORE	No	Yes
All OMIP	Yes	Yes
OMPI but CORE long &short wave radiation	Yes	Yes
OMIP but CORE precip, snow	No	No
OMIP but CORE precip, snow, wind	Yes	Yes

Understanding Sea-Ice Drifting in OMIP Run

- Drifting with CORE radiation heat fluxes
- No drifting with CORE precipitation & snow
- Drifting with CORE precipitation, snow & wind

Hypotheses

- Difference in total precipitation causes difference in incoming Atlantic water?
- Or: snow changes ice insulation?
- Roles of difference in wind need further study: turbulent heat fluxes vs circulation?

Further Work

- Complete assessment of forcing climatologies, and model dependence on accuracy of forcing
- Spin-up => Simulations with inter-annually varying forcing (including boundary forcing from global models)
- Validation with satellite and in situ observations
- Add tides
- Upgrading ice and ocean model; new ice model (LIM3); LIM3-CICE4 inter-comparison(?)
- Develop forecasting capacity (sea-ice and ocean data assimilation, M. Buhner & G. Smith)
- Regional climate applications