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ABSTRACT

The effects of the parameterized wind stress error covariance function on the a priori error covariance of

an ocean general circulation model (OGCM) are examined. These effects are diagnosed by computing the

projection of the a priori model state error covariance matrix to sea surface height (SSH). The sensitivities of

the a priori error covariance to the wind stress curl error are inferred from the a priori SSH error covariance

and are shown to differ between the subpolar and subtropical gyres because of different contributions from

barotropic and baroclinic ocean dynamics. The spatial structure of the SSH error covariance due to the wind

stress error indicates that the a priori model state error is determined indirectly by the wind stress curl error.

The impact of this sensitivity on the solution of a four-dimensional inverse problem is inferred.

1. Introduction

An advanced data assimilation technique for four-

dimensional (4D) ocean data assimilation studies seeks

an optimal trajectory of a model state vector by esti-

mating errors in the model equations, initial values,

boundary values, and constants in the subgrid-scale

parameterization schemes. The four-dimensional vari-

ational data assimilation (4DVAR) techniques with

strong/weak constraints are the most common tech-

niques to solve this type of inverse problem. In these

techniques, the optimal sizes of errors are sought by

minimizing a cost function that requires knowledge of

the statistical properties of those errors. Generally,

estimating an adequate structure for the statistical

properties is not a trivial task and we need to model

them with certain assumptions. In this study, we inves-

tigate the impact of the assumptions we make for the

wind stress error covariance function in estimating

wind-driven basin-scale ocean circulation.

The statistical properties of the wind stress error are

introduced into 4DVAR and Kalman filter/smoother

data assimilation systems as a model error covariance

matrix. The simplest formulation is based on the as-

sumptions that the zonal and meridional wind stress

errors are independent stochastic processes and that

their autocovariance functions can be modeled as a di-

agonal matrix (e.g., Stammer et al. 2002, 2003; Masuda

et al. 2003; Köhl et al. 2007). When we interpret the error

covariance matrix in terms of its power spectrum distri-

bution (e.g., Priestley 1981), the diagonal covariance as-

sumption indicates that the error signal is a white noise

process. Although there is no direct evidence indicating

that the wind stress error can be modeled by a white

noise process, nondiagonal forms of the wind stress error

covariance matrix are seldom used in 4D ocean data

assimilation. Vossepoel et al. (2004) implemented a

nondiagonal wind stress error covariance matrix in the

4DVAR system in their twin experiments. In the Kalman

filter technique, Miller and Cane (1989) assumed a

Gaussian function to design the wind stress error co-

variance while Fukumori et al. (1999) used a nondiagonal

wind stress error covariance model based on sample

covariance calculated from reanalysis wind stress data.

Since the wind stress error is a stochastic variable, its

impact on the analysis of 4D data assimilation may be

understood by looking at the response of the wind-

driven ocean circulation to a stochastic wind stress
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forcing. The statistical properties of the ocean state

vector in relation to the stochastic wind stress have been

studied extensively since the pioneering works of Veronis

and Stommel (1956) and Veronis (1970). Frankignoul

et al. (1997), Willebrand et al. (1980), and Müller and

Frankignoul (1981) examined the linear quasigeo-

strophic response of the midlatitude ocean to a sto-

chastic wind stress and suggested that the synoptic to

basin-scale ocean response is largely controlled by the

wind stress curl. However, in modern data assimilation

systems based on primitive equations, error statistics of

the wind stress curl error are not explicitly mentioned

and their impact on the inverse solution is not well un-

derstood.

In this study, we investigate the role of the wind stress

error term in shaping the optimal solution of a 4DVAR

data assimilation system applied to midlatitude, basin-

scale ocean circulation. Specifically, we investigate the

impact of wind stress curl error statistics, which are

implicitly determined by the wind stress error statistics,

on the 4DVAR analysis. This paper is organized as

follows. In section 2, the role of the model error in a

variational data assimilation system is explored, while

section 3 describes a wind stress curl and divergence

error that are implicitly specified by a given wind stress

error covariance. The experimental design to examine

the sensitivity of the a priori model state error covari-

ance matrix to the correlation structure of a wind stress

error is described in section 4. The results obtained from

the numerical experiments are discussed in section 5

and concluding remarks are given in section 6.

2. Review of a 4DVAR system

Various types of 4DVAR techniques, such as strong

or weakly constrained 4DVAR and the representer

method are all based on the maximum a posteriori

probability (MAP) estimation (e.g., Todling 2000). Let

a vector x denote the 4D model state vector to be esti-

mated in the data assimilation system. Given a data

vector y as a linear transformation of x, the MAP esti-

mation of x is obtained by minimizing the cost function

defined as

J[x] 5
1

2
(x� xb)TP�1(x� xb)1

1

2
(y� Hx)TR�1(y� Hx),

(1)

where xb is the background or the first-guess estimation

of x, H is the observation matrix, R is the observation

error covariance matrix, and the superscript T indicates

transpose.

The a priori model state error covariance matrix P is

defined as

P 5 h(xt � xb)(xt � xb)Ti, (2)

where h i is the statistical mean operator, xt denotes

true model state, and xb is assumed to be unbiased

(hxt 2 xbi5 0). The MAP estimate of x is readily derived

from (1) in the same manner as the optimal interpola-

tion (OI) system (e.g., Courtier 1997); namely,

xa 5 xb 1 PHT(S 1 R)�1 d, (3)

where S 5 HPHT is the representer matrix and

d 5 y 2 Hxb is the innovation vector. The role of P in

finding the optimal estimation xa is to determine the

shape of the interpolation kernels that redistribute the

model–data misfits in d to their surrounding four-

dimensional space (Bennett 1992, 2002).

The formulation of the 4DVAR algorithm starts by

defining a cost function of the form

J[x] 5
1

2
uTQ�1u 1

1

2
(y� Hx)TR�1(y� Hx) (4)

with dynamical constraints

G[x]� f 5 u, (5)

where G is the (non)linear model operator; f is the

background estimation of forcing, which may include

external forcing, internal sources, and boundary and

initial values; and u is the error in the model equations

with a covariance matrix huuTi5 Q and a mean hui5 0.

The tangent linear approximation of (5) is

Gx� ~f 5 u, (6)

where G is the tangent linear approximation of G line-

arized around the previous estimation of x and ~f is the

extended forcing that includes f and the pseudoforcing

arising from the linearization of G (Ngodock et al. 2000).

Defining the background estimation xb as the solution

of (6) when u 5 0, the incremental form of the tangent

linear equation is written as

Gdx 5 u, (7)

where dx 5 x 2 xb. Since the matrix G is always in-

vertible, we also have an alternative form of the tangent

linear equation

dx 5 Mu, (8)

where M 5 G21 (see appendix A). From the expression

in (8), it can be shown that the increment dx has zero

mean and its covariance is given by

~P [ hdxdxTi5 MQMT. (9)
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Inserting the left-hand side of (7) into u on the right-

hand side of (4), we obtain a cost function of the fol-

lowing form (see appendix A):

J[dx] 5
1

2
dxT ~P�1dx 1

1

2
(d� Hdx)TR�1(d� Hdx). (10)

The minimum point of the cost function (10) is given by

dxa 5 ~PHT(~S 1 R)�1d, (11)

where ~S [ H~PH
T

. Equations (10) and (11) are the ap-

proximations of (1) and (3), respectively, in the outer

loop of the 4DVAR algorithm. We expect that the co-

variance matrix ~P in (10) converges to the a priori error

covariance matrix P in (1) at the end of the outer loop

iterations. Thus, (9) and (10) indicate that the a priori

error covariance matrix of 4DVAR is modeled by Q and

M (Lorenc 2003). Assuming that ~P at the first iteration is

a good approximation of P, we use the relation (9) as a

tool to examine dependencies of a shape of P on Q in

this study.

In 4DVAR ocean data assimilation, the first term of

the cost function (4) typically has the following form

(e.g., Stammer et al. 2002):

uTQ�1u 5 DtTQ�1
Dt Dt 1 DqTQ�1

DqDq 1 DxT
0 B�1Dx0

1 DxT
BD�1DxB 1 DeTQ�1

De De, (12)

where uT 5 [DtT, DqT, DxT
0, DxT

B, DeT] contains the er-

rors in wind stress Dt, the surface buoyancy flux Dq, the

initial values Dx0, the boundary values DxB, and the

internal model dynamics De. Each of these error com-

ponents is assumed to be an independent stochastic

variable. Thus, the model error covariance matrix Q on

the left-hand side of (12) is a block diagonal matrix with

submatrices QDt, QDq, B, D, and QDe on the right-hand

side. To focus on the role of the wind stress error con-

straint [the first term on the right-hand side of (12)] in

the 4DVAR analysis, we will ignore all other errors in

this study.

The impact of Q on the shape of optimal estimation

xa can be investigated by examining the dependency of
~P on Q in (9). Since the full matrix ~P is too large to be

evaluated directly, we use subspaces of ~P. In particular,

we use the column vector of ~P that contains the cross

covariance between the sea surface height (SSH) error

at a particular sample point and other model state er-

rors. Since the SSH has strong sensitivity to stochastic

wind stress (e.g., Willebrand et al. 1980), this column

vector is expected to provide a good representation of
~P. From (9), the column vector of ~P that contains the

cross covariance between the SSH error at the mth

sample point (rm, tm), and the model state error is given

by

ph
m 5 h(x� xb)(hm � hb

m)i, (13)

where hm [ h(rm, tm) is the model SSH at a sample

location rm over the sea surface and at a sample time tm.

The actual calculation of ph
m is conducted by replacing

the statistical mean operator h i by an ensemble mean

operator h iN based on N realizations of x calculated

from (6).

An alternative method to calculate ph
m is to use the

direct representer method (Bennett 1992). Using the

alternative form of ~P in (9), it can be shown that ph
m is

evaluated by

ph
m 5 MQMThh

m, (14)

where, the column vector hh
m is defined such that hm is

extracted from x by hm 5 (hh
m)Tx. Equation (14) can be

evaluated in the following two steps:

l 5 MThh
m and (15)

ph
m 5 MQl, (16)

where l is the adjoint variable vector. Equation (15) is

the adjoint backward equation and (16) is the tangent

linear forward equation (Bennett 2002, p. 19). We refer

to ph
m as a representer vector hereafter in this study. If

we use an infinite number of realizations to compute

(13), the two methods in (13) and (14) lead to the same

solution. For cross-validation purposes, we use both

methods to compute ph
m.

3. Wind stress error covariance function

The covariance of the wind stress error vector,

Dt 5 [Dtx, Dty]T, can be expressed by the bivariate

covariance matrix:

QDt(r1, t1; r2, t2) [ hDt(r1, t1)Dt(r2, t2)Ti5
Qxx

Dt(r1, t1; r2, t2) Q
xy

Dt
(r1, t1; r2, t2)

Q
yx
Dt

(r1, t1; r2, t2) Q
yy
Dt

(r1, t1; r2, t2)

" #
, (17)
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where r 5 (x, y) is a location over the sea surface, and t is

a time coordinate. Auto- and cross-covariance functions

on the right-hand side of (17) are defined by

Qab
Dt(r1, t1; r2, t2) [ hDta(r1, t1)Dtb(r2, t2)i. (18)

For simplification, we have also assumed that hDti 5 0.

The covariance matrix QDt is normally simplified in

4DVAR ocean data assimilation studies. In the follow-

ing, we will review typical simplifications and discuss

their consequences from a dynamical point of view.

In subsequent discussions, we assume that the cross-

covariance components, Qxy
Dt and Qyx

Dt, in (17) are zero,

meaning that the zonal and meridional wind stress er-

rors are independent, stochastic variables. The general

case with nonzero cross-covariance functions is dis-

cussed in appendix B. Under this assumption, the cost

function that measures a size of the wind stress error is

written in the following form:

JDt[Dtx, Dty] 5
1

2
Dtx �Wx

Dt � Dtx 1
1

2
Dty �W

y
Dt
� Dty,

(19)

where d is the inner product defined as

a � b 5

ððð
a(r, t)b(r, t) dr dt, (20)

and Wx(y)
Dt is the weight function that satisfies

Q
xx(yy)
Dt

(r1, t1; r2, t2)�Wx(y)
Dt

(r1, t1; r2, t2) 5 d(r1� r2, t1 � t2).

(21)

The right-hand side of (21) is the Dirac delta function.

We also assume that Dt is a stationary stochastic

process, which can be expressed by the following form:

Dt 5 [Dtx(r, t), Dty(r, t)]

5 [sx
Dt(r)Dt̂x(r, t), s

y

Dt
(r)Dt̂y(r, t)], (22)

where sDt
x(y) is the standard deviation and Dt̂x(y) is the

normalized wind stress error of the zonal (meridional)

component with unit variance. We further assume that

the stochastic process of Dt̂x(y) is uniform and its cor-

relation function is separable in spatial and temporal

coordinates. Then the autocovariance functions on the

right-hand side of (17) can be written as

Qxx
Dt(r1, t1; r2, t2) 5 s x

Dt(r1)rx
Dt(~r)rt

Dt(~t )s x
Dt(r2) and

Q
yy

Dt
(r1, t1; r2, t2) 5 s

y

Dt
(r1)r

y

Dt
(~r)rt

Dt(~t )s
y

Dt
(r2),

(23)

where

r
x(y)
Dt

(~r)rt
Dt(~t Þ[ hDt̂x(y)(r1, t1)Dt̂x(y)(r2, t2)i, ~r [ r2 � r1,

~t [ t2 � t1.

In (23) we have also assumed that the zonal and me-

ridional wind stress errors have the same temporal

correlation function rt
Dt

(~t ).

Wind-driven ocean circulation is controlled by the

rotational (curl) and irrotational (divergence) compo-

nents in the wind stress field. The dynamical impact of

the wind stress error structure on 4DVAR analysis can

be better understood by examining the error structure

of these effective forcing terms (i.e., wind stress curl and

divergence errors) rather than wind stress error. The

wind stress curl error, D§, and divergence error, Dm, are

calculated from the given wind stress error as

D§ [
›Dty

›x
� ›Dtx

›y
and (24)

Dm [
›Dtx

›x
1

›Dty

›y
. (25)

From (24) and (25), the covariance functions of D§ and

Dm can be expressed by the covariance functions of

original wind stress errors as

Qeff 5
QD§D§ QD§Dm

QDmD§ QDmDm

� �
5 F[QDt]. (26)

Inversely, we also have

QDt 5 F�1[Qeff]. (27)

The explicit forms of the functionals F in Eq. (26) and

F 21 in Eq. (27) are discussed in appendix B. Since ~P is a

function of QDt as indicated by (9), ~P can also be pa-

rameterized as a function of the effective forcing error

covariance Qeff.

In the following discussion, we will focus on the

structure of the wind stress curl error covariance func-

tion, QD§D§. From (22) and (24), we obtain

D§ 5 D§›s 1 D§›t, (28)

where

D§›s [
›s

y

Dt

›x
Dt̂y �

›s x
Dt

›y
Dt̂x and

D§›t [ s
y

Dt

›Dt̂y

›x
� s x

Dt

›Dt̂x

›y
. (29)

We have assumed that sDt
x(y) and Dt̂x(y) are differentiable

at least to the first order. The wind stress curl error D§

consists of two terms. The first term originates from the
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shear of the wind stress error standard deviations, while

the second term originates from the shear of the nor-

malized wind stress error field.

From (28), the autocovariance function QD§D§ has

another representation as

QD§D§ 5 Q›s›s
D§D§ 1 Q›t›t

D§D§ 1 Q›s›t
D§D§ 1 Q›t›s

D§D§, (30)

where

Q›s›s
D§D§ [ hD§›s(r1, t1)D§›s(r2, t2)i,

Q›t›t
D§D§ [ hD§›t(r1, t1)D§›t(r2, t2)i,

Q›s›t
D§D§ [ hD§›s(r1, t1)D§›t(r2, t2)i, and

Q›t›s
D§D§ [ hD§›t(r1, t1)D§›s(r2, t2)i. (31)

From (29) and (31), Q›s›s
D§D§ is written as

Q›s›s
D§D§(r1, t1; r2, t2) 5

›s x
Dt

(r1)

›y
rx

Dt(~r)
›s x

Dt
(r2)

›y

�

1
›s

y

Dt
(r1)

›x
r

y

Dt
(~r)

›s
y

Dt
(r2)

›x

�
rt

Dt(~t ),

(32)

where rDt
x(y) is the correlation function of Dtx(y) and we

used the assumption that Dtx and Dty are independent

stochastic variables. Assuming that the correlation

functions rx
Dt and ry

Dt are twice differentiable, Q›t›t
D§D§ is

written as

Q›t›t
D§D§(r1, t1; r2, t2) 5 sx

Dt(r1) �
›2rx

Dt
(~r)

›~y2

" #
sx

Dt(r2)

(

1 s
y
Dt

(r1) �
›2r

y

Dt
(~r)

›~x2

" #
s

y
Dt

(r2)

)
rt

Dt(~t ).

(33)

We consider the case when the first derivatives of the

autocorrelation functions rx
Dt and r y

Dt vanish at ~r 5 0,

which is true for the Gaussian function used in this

study. In this case, the cross-covariance functions, Q›s›t
D§D§

and Q›t›s
D§D§, on the right-hand side of (30) do not con-

tribute to the variance distributions of D§. Then the

variance of the wind stress curl error is deduced from

(30), (32), and (33) as

s2
D§(r) 5

›s
y

Dt
(r)

›x

� �2

1
›s x

Dt
(r)

›y

� �2

1

ffiffiffi
2
p

s x
Dt

(r)

Lx
y

" #2

1

ffiffiffi
2
p

s
y

Dt
(r)

Ly
x

" #2

, (34)

where Lx
y and Ly

x are the characteristic length scales

(Daley 1991) defined as

Lx
y 5 �

2r x
Dt

›2r x
Dt

/›y2

 !1/2

and Ly
x 5 �

2r
y
Dt

›2r
y

Dt
/›x2

 !1/2

.

(35)

Equation (34) suggests that the total variance of D§

depends on the characteristic length scales of the given

wind stress error correlation functions. For simplicity,

we represent the characteristic length scales in (34) by a

single length scale LS. At the limit LS / ‘, the third

and fourth terms on the right-hand side of (34) vanish

and the total variance is dominated by the shear of the

wind stress error standard deviation. Inversely, at the

limit LS / 0, the third and fourth terms become infi-

nitely large and dominate the total variance. In an ac-

tual 4DVAR system, constructed on a finite number of

grid points, these terms remain finite in the limit LS / Dr,

where Dr is the horizontal grid size.

When sx
Dt and sy

Dt are functions of space and Dt̂x and

Dt̂y are white noise processes in space, the cost function

JDt in (19) can be written in the following form:

JDt[Dtx, Dty] 5
1

2

ðð
(s x

Dt)�2(Dtx 8 wt
Dt 8 Dtx) dr

1
1

2

ðð
(s

y

Dt
)�2(Dtx 8 wt

Dt 8 Dtx) dr, (36)

where 8 is the inner product defined by

a 8 b[

ðð
a(t)b(t) dt (37)

and wt
Dt is the weight function that satisfies

rt
Dt(t1; t2) 8 wt

Dt(t1; t2) 5 d(t2 � t1). (38)

Special attention is required to derive the autoco-

variance function of the wind stress curl error inferred

from the cost function in (36). Here D§›s can be defined

as in the first part of (29) and its autocovariance function

is derived from (32) by replacing rDt
x(y) with a delta

function. Since Dt̂x and Dt̂y are uncorrelated white noise

processes, the stochastic process D§›s is also a white

noise process whose amplitude is modulated by shears

of the wind stress error standard deviations. However,

since Dt̂x and Dt̂y are not differentiable, we cannot

formally define the autocovariance function of D§›t. In

this case, it is useful to write the delta function as a limit

of the Gaussian probability function:

d(r) 5 lim
e!0

de(r), de(r) [
1

e
ffiffiffiffi
p
p exp � rj j2

e2

 !
. (39)

Using this limit, the spatial correlation functions in (33)

are approximated as
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�
›2r

y

Dt

›~x2
ffi lim

e!‘

2
ffiffiffiffi
p
p

e
1� 2~x2

e2

� �� �
de(~r) and

�
›2r x

Dt

›~y2
ffi lim

e!‘

2
ffiffiffiffi
p
p

e
1� 2~y2

e2

� �� �
de(~r). (40)

In a finite-difference scheme, e approaches Dr, but never 0.

In the foregoing discussion, it was shown that the

wind stress error covariance function implicitly specifies

the error covariance functions of the effective forcing

for the wind-driven ocean circulation, namely, the wind

stress curl error and wind stress divergence error. Fur-

thermore, the relationship between the specific form of

the cost function commonly used in 4D data assimila-

tion and the implied wind stress curl error covariance

was described. In the next section, we present numerical

experiments designed to study a role of the wind stress

curl error covariance function in shaping the a priori

model error covariance matrix ~P. Specifically, we in-

vestigate the impact of the wind stress curl error in the

context of midlatitude, gyre-scale ocean circulation

represented in a coarse-resolution OGCM.

4. Design of numerical experiments

To set up our experiments, we use the primitive equa-

tion z-coordinate model (PEZ) developed at Oregon

State University and its inverse modeling package with

tangent linear and adjoint codes of PEZ (Chua and

Bennett 2001; Muccino et al. 2008). The discretization

scheme in PEZ is based on the Geophysical Fluid Dy-

namics Laboratory Modular Ocean Model, version 3.0

(MOM3; Pacanowski and Griffies 1999). The Richard-

son number–dependent vertical diffusivity and viscosity

coefficients used in the original PEZ configuration are

replaced by a simple Laplacian formulation with con-

stant diffusivity and viscosity coefficients. The inde-

pendent variables in our version of the PEZ model are

the horizontal velocity components (u, y), the free SSH

h, and the potential density ru. The baroclinic time step

for the momentum and the potential density equations

is 72 min, while the barotropic time step of 2 min is used

to solve SSH explicitly. The model domain is shown in

Fig. 1. It was designed so that it broadly resembles the

Pacific basin over the latitudinal range of 208S–608N and

longitudinal width of 1008. The horizontal grid size is

1.28 in both the zonal and meridional directions. The

ocean bottom has been assigned a uniform depth of

4000 m and the vertical discretization has 20 levels with

thicknesses ranging from 10 m at the top to 500 m near

the bottom. The southern boundary at 208S is assumed

to be a rigid wall. Lateral boundary conditions were set

to be no-slip in the momentum equations and no-flux in

the potential density equation.

In the preliminary experiments, the horizontal eddy

viscosity coefficient Kh was chosen from a range of

values 1.0 3 104 –4.0 3 104 m2 s21, which are typical for

coarse resolution ocean circulation models (e.g., Cox

and Bryan 1984). Using various sizes of Kh within this

range, we conducted data-less assimilation experiments

(Bennett and Thorburn 1992; Ngodock et al. 2000) to test

the stability of the tangent linear model without model

error. Within this range, we chose a particular Kh value of

4.0 3 104 m2 s21, for which the tangent linear solution of

(6) converges to the nonlinear solution of (5) within a few

Picard iterations over a 1-yr period. The vertical eddy

viscosity coefficient Ky, horizontal eddy diffusivity coef-

ficient Ah and vertical eddy diffusivity coefficient Ay were

set to Ky 5 1.0 3 1023 m2 s21, Ah 5 1.0 3 103 m2 s21, and

Ay 5 3.0 3 1025 m2 s21, respectively. Unstable vertical

stratification was removed by applying the convective

adjustment scheme (Cox 1984) to the water column

wherever instability is detected. Because of the relatively

coarse spatial resolution, there are no mesoscale eddies

or baroclinic and barotropic instabilities in our model.

Hence, dynamical balances in the large-scale ocean cir-

culation are quasi-linear, except for the western bound-

ary currents. The model ocean is driven at the surface by

a buoyancy flux in the potential density equation and

zonal wind stress forcing in the momentum equations.

The buoyancy flux is determined by relaxing the sea

surface potential density back to the zonally averaged

annual climatology from the World Ocean Atlas 2001

(WOA; Conkright et al. 2002). The relaxation time scale

was chosen to be 30 days. This buoyancy forcing is turned

off after an initial 10-yr spinup run and before the fol-

lowing 1-yr experiments.

For simplicity, the known part of the wind stress

forcing is specified as a zonal component that is steady

and zonally uniform. The steady zonal wind stress was

created by zonally averaging the Comprehensive Ocean–

Atmosphere Data Set (COADS) climatological zonal

wind stress (Trenberth et al. 1989) over the Pacific

basin. The initial potential density was created by the

zonally averaged WOA climatology for the Pacific basin.

The ocean model was spun up from rest for 10 yr with the

steady forcing fields and this provided a quasi-steady-

state ocean circulation, as confirmed by total kinetic and

potential energy calculations. The SSH at the end of the

spinup run in Fig. 1 shows subtropical and subpolar gyres

that are in reasonable agreement with characteristic dy-

namical circulation structures in the North Pacific Ocean.

This result is used as the ‘‘perfect’’ initial condition for

the calculation of the a priori model state error.

Two types of approximations are introduced in de-

riving the tangent linear model (TLM) and its ad-

joint model from the nonlinear forward model. The first
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approximation is the elimination of the convective ad-

justment scheme in the tangent linear tracer equation

(e.g., Weaver et al. 2003). Since the buoyancy flux is

turned off after the spinup, the convective adjustment

process is not active once a quasi-steady-state ocean

circulation has been reached. This approximation was

justified by preliminary experimental results showing

that the root-mean-square (RMS) difference in SSH

fields arising from the nonlinear model with and without

the convective adjustment scheme remains in the order

of 1026 cm for the 1-yr period after the spinup. The

second approximation was introduced in order to reduce

the storage size of the background model state vector,

which is required by TLM and its adjoint model. We

store the truncated background model state vector at

every 20 baroclinic model time steps, which corresponds

to one model day. The background model state vector is

then reconstructed by interpolating the stored trajectory

by using a step function. The RMS difference between

the SSH outputs from the TLM with a truncated back-

ground model state vector and a full model state vector is

on the order of 1023 cm over the same 1-yr period. Since

the RMS errors are much smaller than the SSH standard

deviation arising from the dynamical response to the

wind stress error (on the order of a few centimeters), we

conclude that both approximations have a minor impact

on the structure of the a priori model state error. The

adjoint model is constructed based on the same approx-

imations used for the TLM.

Based on the study of reanalysis wind datasets con-

ducted by Gille (2005), we assume the following char-

acteristics for the known and error components of wind

stress forcing. (i) Zonally averaged climatological wind

stress data are sufficiently precise that they may be used

as known parts of the zonal wind stress forcing. (ii) The

standard deviation of the zonal wind stress error is pro-

portional to the mean zonal wind stress. For simplicity, it

is also assumed that (iii) the zonal wind stress variance is

zonally uniform and (iv) both the known and erroneous

parts of the meridional wind stress forcing are zero. The

resultant spatial structure of the zonal wind stress error

variance then resembles the wind stress error variance

used in previous ocean data assimilation studies (e.g.,

Stammer et al. 2002, 2003; Vialard et al. 2005).

Realizations of the zonal wind stress error Dtx(r, t)

are simulated from the prescribed zonal wind stress error

autocovariance function QDt, assuming stationarity and

uniformity of the stochastic process. We use the follow-

ing form of QDt:

QDt(r1, t1; r2, t2) 5 sDt(y1)r(~x, ~y, ~t )sDt(y2), (41)

where ~x [ x2 � x1, ~y 5 y2 � y1, ~t 5 t2 � t1, sDt is the

zonal wind stress error standard deviation, and rDt is the

FIG. 1. Model configuration for the sensitivity experiments. (left) Zonal wind stress forcing

(continuous line) and its std error (horizontal lines). (right) Model domain and mean sea level

anomaly at the end of the spinup run (contours). The contour interval (CI) is 0.1 m. Two

subdomains SPE and STE for subsequent statistical analysis are shown with dashed lines, and

sample points for the calculation of the representer vector, SPE (428N, 778E) and STE (178N,

778E), are marked by black dots.
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normalized wind stress error autocorrelation function.

In this experiment, sDt is chosen to be sDt(y) 5 �tx(y)j j,
where �tx(y) is the steady zonal wind stress defined from

the climatology (see the left panel in Fig. 1 and Fig. 10a).

Here rDt is assumed to be homogeneous and separable

in all coordinate directions as

rDt(~x, ~y, ~t ) 5 exp � ~x2

L2
X

 !
exp � ~y2

L2
Y

 !
exp �

~tj j
LT

� �
,

(42)

where LX, LY, and LT are decorrelation scales in the

zonal, meridional, and temporal coordinates, respec-

tively. The convolution between the correlation func-

tion in (42) and the adjoint variables is performed by a

diffusion equation for the spatial correlation and the

Langevin equation for the temporal correlation (Chua

and Bennett 2001; Bennett 2002). The function form for

(42) is chosen to reproduce two cases: (i) a diagonal

covariance matrix (e.g., Stammer et al. 2002) and (ii) a

nondiagonal covariance matrix based on the wind stress

covariance of reanalysis data (e.g., Fukumori et al.

1999). Case i is represented by choosing the decorrela-

tion length scales LX, LY, and time scale LT of the same

order as the horizontal model grid resolution and time

step size. Case ii is represented by choosing decorrela-

tion length and time scales corresponding to reanalysis

data. Although it is not in the scope of this study, it

should be noted that the error covariance structure in-

ferred from a difference between the power spectra of

reanalysis wind stress data and satellite-derived data

(Milliff et al. 2004; Gille 2005) does not support any of

these structures. Rather, a plausible wind stress error

covariance has more power in higher wavenumbers and

frequencies.

The wind stress curl error D§ is derived from (28),

(29), and (34) as

D§(x, y) 5 � ›sDt(y)

›y
Dt̂x(x, y)�

ffiffiffi
2
p

sDt(y)

LY
D§̂(x, y),

(43)

where we assume that Dty 5 0. Here D§ consists of two

stochastic variables, the normalized zonal wind stress

error Dt̂x and the normalized wind stress curl error

D§̂ [(›Dt̂x/›y)(LY /
ffiffiffi
2
p

). The variance of D§ is then given

by

s 2
D§(y) 5

›sDt(y)

›y

� �2

1
2

L2
Y

s 2
Dt(y). (44)

Equations (44) is consistent with the general expression

in (34). The variance of the first term on the right-hand

side of (44) is given by the meridional gradient of the

originally specified zonal wind stress error standard

deviation. The variance of the second term is a product

of the variance of the zonal wind stress error and 2LY
22.

Thus, the variance of the first term has a smaller spatial

scale than the second term and its peaks appear where

the meridional gradient of the zonal wind stress error

standard deviation are at local maxima. The autoco-

variance function of D§ is then written as

where rDt is the autocovariance function of Dt̂x of the

form (42). The autocovariance function of D§̂ and the

cross covariance between D§̂ and Dt̂x have the following

form:

rD§̂(~x, ~y, ~t ) 5 1� 2

L2
Y

~y2

 !
rDt(~x, ~y, ~t ) and (46)

rD§̂Dt̂(~x, ~y, ~t ) 5 ~yrDt(~x, ~y, ~t ). (47)

The power spectral density functions (PSDs) of the two

stochastic processes Dt̂x and D§̂ are derived from (42)

and (46), respectively, as

hDt̂(k, l, v) 5
LXffiffiffi

2
p exp �L2

X

4
k2

 !
LYffiffiffi

2
p exp �L2

Y

4
l2

 !

3

ffiffiffiffi
2

p

r
LT

1 1 L2
Tv2

and (48)

hD§̂(k, l, v) 5
LYffiffiffi

2
p l

� �2

hDt̂(k, l, v), (49)

where (k, l) are the horizontal wavenumbers of the

zonal and meridional components, and v is the angular

frequency.

QD§D§(r1, t1; r2, t2) 5
›sDt(y1)

›y
rDt(~x, ~y, ~t )

›sDt(y2)

›y
1

ffiffiffi
2
p

sDt(y1)

LY
rD§̂(~x, ~y, ~t )

ffiffiffi
2
p

sDt(y2)

LY

�
ffiffiffi
2
p

LY

›sDt(y1)

›y

sDt(y1)

2
4

3
5rD§̂Dt̂(~x, ~y, ~t ) sDt(y2)

›sDt(y2)

›y

� � ffiffiffi
2
p

LY
,

(45)
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To reduce the number of independent parameters in

the error correlation function, we constrain the ratio of

the zonal decorrelation length scale LX to the meridi-

onal decorrelation length scale LY as LX:LY 5 1:2

and introduce a mean decorrelation length scale of

LS 5 (LX 1 LY)/2. The adjustable parameters in the

wind stress error correlation function are then LS and

LT in the following experiments.

The LS of the zonal wind stress error covariance is set to

100 and 750 km in these experiments. The LS 5 100-km

case corresponds to the case i of the diagonal covariance

matrix in spatial coordinates. For the case ii, LS 5 750

km is determined from the PSD of the National Centers

for Environmental Prediction (NCEP) analysis (Milliff

et al. 2004). The spatial structure of the correlation

functions in (42), (46), and (47) are plotted in Fig. 2 for

the two decorrelation length scales. For LS 5 100 km,

the spatial structure of the correlation function in (46) is

not distinguishable from the structure of (42) with a

single peak at its center. For LS 5 750 km, the corre-

lation function of D§̂ is seen to have one positive peak at

its center and two negative peaks: one to the north and

one to the south. For both cases, the spatial structure of

cross-correlation function in (47) is characterized by

two peaks with one negative peak south of center and

one positive peak to the north. As discussed later, the

distinct spatial structures of these correlation functions

are good indicators for checking the influence of each

term on the right-hand side of (45) on the shape of ~P.

Two decorrelation time scales, LT 5 1 day and LT 5 10

days are also chosen. The former corresponds to the

case of a diagonal matrix in temporal coordinates while

the latter is determined from the frequency spectra of

reanalysis wind stress products (Gille 2005). The resul-

tant PSDs of the autocorrelation functions, (48) and

(49), are plotted in Fig. 3. Since the frequency and zonal

wavenumber spectra in Figs. 3a,b are common in both

PSDs, it is the meridional wavenumber spectra that

differs between the two stochastic processes Dt̂ and D§̂.

The major difference between the two meridional

wavenumber spectra is that the spectra of D§̂ has a high

peak at the characteristic wavenumber lc 5 2/LY whereas

the spectra of the wind stress error are flat below lc and

descend beyond lc.

The representer vector ph
m is computed by the en-

semble solution in (13), based on 100 realizations of the

model state vector that were produced by perturbing

the OGCM with wind stress errors that obey the error

covariance functions in (41) and (42). Realizations of

the wind stress error were generated using a diffusion

equation in space and a first-order autoregression model

in time (Bennett 2002). The vector ph
m is also computed

by solving (14). We chose the two spatial locations SPE

(at 428N, 778E) and STE (at 178N, 778E) in Fig. 1 as

sample locations and day 360 as a sample time to

compute ph
m. Since ph

m has the length of the model state

FIG. 2. Spatial structure of the correlation functions in (45) for (top) LS 5 100 km and (bottom) LS 5 750 km. Correlation functions are

computed at STE (178N, 508E) and at SPE (428N, 508E), marked by black dots. Autocorrelation function of (a),(d) normalized wind stress

error, rDt, and (b),(e) normalized wind stress curl error, rD§̂. (c),(f) The cross-correlation function of normalized wind stress curl and

normalized wind stress error, rD§̂Dt̂ . The CI is 0.2, but is 0.5 in (c) and 50 in (f).
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vector x in the four-dimensional space of the OGCM,

the vector ph
m is still too large to summarize the de-

pendencies of ~P to Q. Here, we define a further-trun-

cated subspace of ~P as

p̂h
m [ s�1

h (rm, tm)Hh
mph

m, (50)

where s 2
h(rm, tm) [ h[h(rm, tm) 2 hh(rm, tm)i]2i and Hh

m is

the matrix that projects x onto the SSH at the sample

time tm. Hereafter, we call the column vector p̂h
m a

normalized representer vector. From the definition of

ph
m in (13), p̂h

m can also be calculated from

p̂h
m [ s�2

h (rm, tm)h[h(r, tm)� hh(r, tm)i][h(rm, tm)

� hh(rm, tm)i]i. (51)

The vectors p̂h
m are calculated for the selected sample

points from (50) and (51) for cross-validation purposes.

The integration period is set to 1 yr for all experiments.

5. Results of numerical experiments and discussion

Figure 4 shows a vector p̂h
m computed by the two

methods for the sample locations SPE and STE at the

sample time tm 5 day 30. In these experiments, the

decorrelation length scale of the wind stress error co-

variance is set to LS 5 100 km and LS 5 750 km and the

time scale is set to LT 5 10 days. Here p̂h
m obtained by

the ensemble method in (51) is generally contaminated

by noise because of the limited number of ensemble

members, as shown in Figs. 4a,b. However, the two so-

lutions around the sample point (black dot in the fig-

ures), calculated by the two methods, show good

agreement. The same level of agreement can be found

at tm 5 day 360. For the case LT 5 1 day, solutions

obtained with the direct representer method in (50)

have a tendency to be numerically unstable for both

LS 5 100 km and LS 5 750 km (not shown here). This

error occurs only when the temporal correlation matrix

is chosen to be diagonal in the direct representer

method and does not influence to the other solutions in

this study. Since the ensemble method produced a nu-

merically stable solution within the ranges of LS and LT

used in this study, we focus on the solutions obtained

from (51) in subsequent discussions.

At both sample locations SPE and STE, the spatial

structure of p̂h
m does not change significantly as a func-

tion of the sample time tm, but its amplitude, namely the

FIG. 3. Power spectral density function of correlation functions in (42), (46), and (47) for the

normalized zonal wind stress error and the normalized wind stress curl error. (a) Frequency

spectra for wind stress and wind stress curl errors. (b) Zonal wavenumber spectra for the wind

stress and wind stress curl errors. (c) Meridional wavenumber spectra for the wind stress error.

(d) Meridional wavenumber spectra for the wind stress curl error. Frequency spectra are

computed for two decorrelation time scales, LT 5 1 day and LT 5 10 days in (a). The wave-

number spectra are computed for two decorrelation length scales, LS 5 100 km and LS 5 750 km

in (b),(c), and (d).
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SSH error variance at the sample location, s2
h(rm, tm),

changes through the range of tm. To smooth out the

shorter scale noise due to the limited number of en-

sembles in a plot of s2
h(rm, tm) (not shown here), we

averaged s2
h(rm, tm) over the subdomain that surrounds

each sample location (Fig. 1). The time series of aver-

aged SSH error variance, �s2
h(rm, tm), at domains SPE

and STE are shown in Fig. 5. In both domains,

�s2
h(rm, tm) grows continuously. Its amplitude is smaller

when LS or LT is shorter. The sensitivity of �s2
h(rm, tm) to

a change in the size of LS is higher for LT 5 10 days than

for LT 5 1 day. The rate of change in �s2
h(rm, tm) as LS

increases from 100 to 750 km is about 30% at domain

SPE (Fig. 5a) while the change in �s2
h(rm, tm) is about

11% at domain STE (Fig. 5c) when LT is set to 1 day.

When LT is set to 10 days, the rate of change in

�s2
h(rm, tm) as LT increased was about 100% in both

domains (Figs. 6b,d).

Figure 6 shows the spatial structure of p̂h
m for LS 5

100 km at tm 5 day 360. Each panel shows a single pos-

itive peak at rm and the length scale of p̂h
m is close to

the length scale of the wind stress curl error correlation

shown in Figs. 2a,b. The influence of the cross-correlation

term in the wind stress curl error cannot be observed.

When LS is increased to 750 km, the spatial structure of

p̂h
m (Fig. 7) also has the same order of length scale as the

wind stress curl error covariance functions in Figs. 2d,e.

Again, the influence of the cross-correlation term in the

wind stress curl error cannot be observed. The similarity

of the covariance function structures between the wind

stress curl error and the SSH error indicates that the

model state error is due to a local response of ocean

dynamics to the wind stress curl error.

Contrary to the case where LS is set to 100 km, the

spatial structure of p̂h
m shows dependencies on the size

of LT and the latitude of rm when LS is set to 750 km.

For LT 5 1 day, the spatial pattern of p̂h
m in Figs. 7a,c is

dominated by a single positive peak around rm. This

pattern resembles the characteristic spatial structure of

the first term of the wind stress curl error correlation

function in (45) in Fig. 2d. This resemblance indicates

that the model state error is mainly controlled by a local

response of the ocean dynamics to the first term of

the wind stress curl error in (43). The influence of the

FIG. 4. Comparison of the normalized representer vectors calculated by the (top) ensemble method and (bottom)

the direct representer method. Representer vectors are computed for the sea surface measurement at points SPE

(428N, 778E) and STE (178N, 778E), marked by black dots, with a 1-month integration period. (a),(c) Solutions for

the wind stress error with LS 5 100 km and LT 5 10 days, respectively. (b),(d) Solutions for LS 5 750 km and LT 5 10 days,

respectively. The CI is 0.2.
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second term in (43) on p̂h
m is clearer when LT is set to

10 days, as shown in Figs. 7b,d. At the sample location

SPE, p̂h
m has a positive peak around the sample location

and two negative peaks to the north and the south

(Fig. 7b). The pattern resembles the characteristic struc-

ture of the wind stress curl error correlation function in

(46) in Fig. 2e. At STE (Fig. 7d), the negative peak to the

north of the positive peak is not seen as it was in Fig. 4d.

However, the northern negative peak is clearly seen in

the direct representer solution of p̂h
m (not shown here),

which is similar to the solution at tm 5 day 30 (Fig. 4d).

We conclude that the spatial pattern found in Fig. 7d is

also determined by the ocean response to the second

term of the wind stress curl error in (43).

In Fig. 7b, p̂h
m is elongated to the west away from the

sample point SPE. Thus, the model response to the wind

stress curl error is both local and remote. The zonally

elongated structure can be obtained at a sample time as

early as tm 5 day 20. Considering the relatively short

time scale for the SSH error correlation to reach to the

western boundary, the structure is likely due to the re-

sponse of the barotropic Rossby wave to the stochastic

wind stress curl (Willebrand et al. 1980). To examine the

degree of contribution from barotropic dynamics to p̂h
m,

we computed another set of vectors p̂h
m for the baro-

tropic OGCM with the same set of error covariance

parameters, LS and LT. The barotropic OGCM has

exactly the same configuration as that of the OGCM

described in section 4, except for an initially uniform

potential density.

The two panels in Fig. 8 show the vector p̂h
m from the

barotropic experiments at the sample point SPE. When

LT is set to 1 day (Fig. 8a), p̂h
m has a spatial structure

similar to that of the first term of the wind stress curl

error correlation function in (42) (Fig. 2d). Thus, the

barotropic response of the model state error is also local

to the wind stress curl error. The locality of the baro-

tropic response to the wind stress disturbance with a

time scale as short as 1 day is discussed in Willebrand

et al. (1980) and our result is consistent with their

analysis. For LT 5 10 days, p̂h
m shows a zonally elon-

gated structure similar to that observed in Fig. 7b. Thus,

we can infer that the westward elongation of p̂h
m at the

sample location SPE is due to the barotropic response

of the model dynamics.

The time series of �s2
h(t) from the barotropic experi-

ments are plotted in Fig. 9, analogous to Fig. 5. The

barotropic SSH error variance is negligibly small over

the subdomain SPE when LS is set to 100 km (Figs. 9a,b)

compared to the total variance (Figs. 5a,b). The baro-

tropic SSH error variances over the subdomain STE are

also negligibly small when LT is set to either 1 or 10 days

(Figs. 9c,d) compared to the total variance (Figs. 5c,d).

However, the amplitude of �s2
h(t) over the subdomain

SPE when LS 5 750 km (Figs. 9a,b) is comparable to

that of the original variance (Figs. 5a,b).

FIG. 5. Time series of SSH error variance averaged over the subdomains (a),(b) SPE and (c),(d) STE defined in

Fig. 1. The decorrelation length scale of wind stress error covariance is chosen to be LS 5 100 km (continuous line)

and LS 5 750 km (dashed line). (a),(c) Computed from a 100-member ensemble of SSH errors for LT 5 1 day and

(b),(d) are for LT 5 10 days.
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In the subpolar gyre, the level of the SSH error vari-

ance �s2
h(t) changes by about 0.4 3 1023 m2 for LT 5 1 day

(Fig. 5a) and about 1.0 3 1023 m2 for LT 5 10 day (Fig.

5b) when the decorrelation length scale in the wind stress

error changes from LS 5 100 km to LS 5 750 km. The

same order of changes in the SSH error variance can be

found in the barotropic experiments (Figs. 9a,b). Fur-

thermore, the fluctuations in the time series of �s2
h(t) for

LS 5 750 km have a similar structure in both the baro-

clinic and barotropic experiments. These results indicate

that the sensitivity of the SSH error variance to a change

in LS at the subpolar gyre is mainly explained by the

barotropic response and that the baroclinic and the baro-

tropic responses are independent stochastic processes.

In the subtropical gyre, the sensitivity of the SSH error

variance to changes in LS (Figs. 5c,d) can be explained by

the baroclinic response (Figs. 5c,d), not the barotropic.

The time series of �s2
h(rm, tm) in the barotropic ex-

periments (Fig. 9) reaches a quasi–steady state in about

20 days, near the time when the zonally elongated pat-

tern of p̂h
m emerges (Fig. 8b). On the other hand,

�s2
h(rm, tm) in the original experiments increases steadily

over the 1-yr period (Fig. 5). Thus, the relative contri-

bution from the barotropic response to ~P becomes

smaller as the perturbation period becomes longer. The

progressive change of the dynamical balance in ~P is due

to the growing baroclinic response to the wind stress

curl error. Considering a propagation speed of the

baroclinic Rossby wave, it may take an extra 10 yr for ~P

to reach a steady state. The difference in the equilib-

rium time scale between the barotropic response and

baroclinic response indicates that the dynamical balance

in ~P, shaped by the wind stress error, keeps changing

during the perturbation period of 1 yr.

The shift in the dominant forcing term for ~P with

changing LT (see Fig. 7) can also be observed in the spa-

tial structure of the SSH error variance, s2
h. Figures 10 b,c

show the meridional distribution of s2
h at day 360. Here

s2
h is zonally averaged to remove small-scale noise. When

LT is set to 1 day, s2
h shows the three peaks at around

128, 238, and 288N for both decorrelation length scales.

The first peak is attributed to the peak of s2
Dt(y) at

around 148N in Fig. 10a and the second and the third

peaks are attributed to the peaks of [›sDt(y)/›y]2 at

around 248 and 288N. The other peaks in the wind stress

curl error variance at higher latitudes do not appear in

FIG. 6. Spatial structure of the normalized representer vectors projected on SSH and computed at the two locations

(top) SPE (428N, 778E) and (bottom) STE (178N, 778E) at day 360. The decorrelation time scale of the wind stress

error covariance is chosen to be (a),(c) LT 5 1 day and (b),(d) LT 5 10 days. The decorrelation length scale LS 5 100 km

is used for all cases. The CI is 0.2.
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the SSH error variance. On the other hand, when LT is

set to 10 days, the wind stress curl error shows an in-

fluence on the SSH error variances at higher latitudes.

With this time scale, the s2
h also starts to show high

sensitivity to the size of LS. The three peaks for LS 5

100 km in Fig. 10c are at the same latitudes as the three

peaks in Fig. 10b. When LS is set to 750 km, the three

peaks are still recognizable in s2
h (Fig. 10c). Differences

from the case of LS 5 100 km are the dominance of the

first peak over the other peaks and the newly appearing

fourth peak around 388N. The fourth peak can be at-

tributed to the peak in s2
Dt(y) at around 368N in Fig. 10a.

Since the two peaks at around 148 and 388N in Fig. 7c

for LS 5 750 km are both attributed to the peaks of

s2
Dt(y), their amplification with the increase of LS from

100 to 750 km can be explained by the strengthening of

the influence of the second term in the wind stress curl

error in (43).

Although the dynamical reason for this shift in the

effective forcing term in the wind stress curl error is not

clear, its impact on the 4DVAR analysis would be sig-

nificant. If all the measurements in the optimal solutions

in (11) and (3) are made on SSH, then the representer

matrix ~S is equal to the covariance matrix of the a priori

SSH error at the measurement points. The SSH error

variance in Fig. 10 corresponds to the diagonal com-

ponents of ~S. The role of the matrix ~S in (11) is to de-

termine the relative importance of each model–data

misfit in the innovation vector d together with a mea-

surement error matrix R. The larger the size of the error

variance, the larger the contribution that the model–data

misfit at the sample point makes to the optimal solution.

In our case, when LT is set to 10 days, the optimal solu-

tion for the SSH measurement is anticipated to change

significantly, depending on the choice of LS.

6. Conclusions

The role of the random component of the wind stress

error in the 4DVAR data assimilation system of a basin-

scale, midlatitude ocean circulation model has been

investigated. It was shown that the wind stress error

covariance functions, when expressed in terms of zonal

and meridional wind stress errors, implicitly specify the

error covariance functions of the effective forcing er-

rors, which are the wind stress curl error and the wind

stress divergence error. The wind stress curl error co-

variance was derived for a given wind stress error co-

variance function of the Gaussian type. The impact of

the wind stress curl error covariance on the shape of the

a priori model state error covariance matrix P, which is

approximated by ~P, was examined.

FIG. 7. As in Fig. 6, but the decorrelation length scale is now LS 5 750 km.
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Our experiments show that the wind stress curl error

covariance, determined by a wind stress error covariance,

has a strong impact on the shape of P. However, in a

standard 4DVAR ocean data assimilation system, the

wind stress curl error covariance is generally not directly

specified. The responses of the model state error to a wind

stress curl error are mainly characterized by two dy-

namical responses at the exact location of the forcing.

One is the local response in both baroclinic and baro-

tropic modes, which project the model–data misfits onto

the vertical coordinate. The other is a remote response

generated by the propagation of barotropic Rossby waves

away from the forcing area. The relative importance of

these two responses on the dynamical balance in P de-

pends on the latitude of the sample point (rm, tm) and on

the shape of the wind stress curl error covariance matrix.

This study does not resolve what proper functional

form of the wind stress error covariance should be

specified in a 4DVAR ocean data assimilation system.

However, our results suggest an alternative approach in

designing a wind stress error covariance. As discussed in

appendix B, the wind stress error covariance functions

can be constructed from the covariance functions of the

wind stress curl and divergence. Although it is not clear

how to design the wind stress curl and divergence error,

the model state vector could be controlled more directly

by choosing these errors as control parameters instead

of the zonal and meridional wind stress errors. The

FIG. 8. Normalized representer vectors computed by the barotropic model for the decorrelation length scale

LS 5 750 km and time scales (a) LT 5 1 day and (b) LT 5 10 days.

FIG. 9. As in Fig. 5, but computed for the barotropic model. Note that the amplitude of time series for LS 5 100 km

(continuous line) is too small to be clearly seen.
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numerical implementation of such a scheme in a 4DVAR

system using a generalized diffusion equation was pro-

posed by Vossepoel et al. (2004; see appendix B).

It was also shown that for the wind stress perturbation

over a 1-yr period, the statistics of the model state error

do not reach a steady state, and this is because of the

continuous growth of the baroclinic response. Consid-

ering the propagation speed of baroclinic Rossby waves,

it is likely that these statistics will take another 10 yr

to reach a steady state. Until that point, the dynamical

balance in P will change as the barotropic response

converges to a steady state much earlier than the baro-

clinic response. For shorter assimilation windows of the

order of 1 month, errors in the initial values are the major

source of the model error u that determines the dy-

namical balance in P (e.g., Weaver et al. 2003). Our

preliminary experiments, conducted with initial and

wind stress errors, show that the SSH error variance is

dominated by the initial error during the first 1 month

period and the influence of the wind stress error takes

over gradually thereafter. Since our results suggest that

P changes the dynamical balance depending on the

length of the model perturbation period, further study

would be required to define an optimal length of the

assimilation window for each application.
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APPENDIX A

Tangent Linear Equations in a Vector–Matrix Form

We assume that the tangent linear model derived

from the nonlinear ocean circulation model in (5) con-

sists of a set of prognostic equations as

x0 5 xb
0 ,

x1 5 M1,0x0 1~f1,

..

.

xN�1 5 MN�1,N�2xN�2 1~fN�1,

8>>><
>>>:

(A1)

where xn is the model state vector, xb
0 is its initial value,

~fn is the extended forcing vector that includes the ex-

ternal forcing, boundary value and the pseudoforcing

term arising from the linearization of a nonlinear dy-

namical operator. A vector with subscript n indicates

that the vector is evaluated at time tn. The matrix Mm,n is

called the transition matrix or the propagator between

time tm and tn, which satisfies the following rule:

Mm,n 5 Mm,m�1Mm�1,m�2 � � �Mn11,n, for m� n $ 1.

(A2)

There are two approaches to summarize the tangent

linear equations in (A1) in a single matrix equation. In

FIG. 10. (a) Meridional distribution of the variance of the wind

stress error and the wind stress curl error in (41) and (45). The solid

line is the variance of the zonal wind stress error s2
Dt and the

dashed line is the variance of a meridional gradient of the zonal

wind stress error (›sDt/›y)2. (b) Meridional distribution of zonally

averaged SSH error variance at day 360 for LT 5 1 day. (c) As in

(b), but for LT 5 10 days.
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the first approach, we eliminate the term with model

state vector xn from the right-hand side of (A1). Then

we have a matrix equation

x 5 M~f, (A3)

where

In the second approach, we move the terms involving xn

in (A1) from the right-hand side to the left-hand side of

this equation. Then we obtain a matrix equation

Gx 5~f, (A5)

where

G 5

I 0 0 � � � 0 0

�M1,0 I 0 � � � 0 0

0 �M2,1 I � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � I 0

0 0 0 � � � �MN�1,N�2 I

2
6666666664

3
7777777775

.

(A6)

Note that the matrices M and G are both lower trian-

gular.

Since the two formulations, (A3) and (A5), are

equivalent, the matrices M and G satisfy the following

condition:

MG 5 GM 5 I, (A7)

that is,

M�1 5 G and G�1
5 M. (A8)

The condition in (A7) can also be confirmed by direct

multiplications between M and G as defined in (A4) and

(A6). Note that the condition in (A7) is valid regardless

of the formal invertibility of the transition matrix

Mn,n21. From (A8) and (9), we obtain the identity

equation

(MQMT)�1
5 GTQ�1G, (A9)

which is used to derive (10).

APPENDIX B

Error Covariance of a Wind Stress Field

From Eqs. (24) and (25), the auto- and cross-

covariance functions of the wind stress curl error and

the wind stress divergence error can be expressed in

terms of the auto- and cross-covariance functions of

the wind stress error as

x 5

x0

x1

x2

..

.

xN�2

xN�1

2
66666664

3
77777775

, M 5

I 0 0 � � � 0 0
M1,0 I 0 � � � 0 0
M2,0 M2,1 I � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

MN�2,0 MN�2,1 MN�2,2 � � � I 0
MN�1,0 MN�1,1 MN�1,2 � � � MN�1,N�2 I

2
66666664

3
77777775

, ~f 5

xb
0

~f1
~f2

..

.

~fN�2
~fN�1

2
66666664

3
77777775

. (A4)

QD§D§(r1; r2) 5
›2Q

yy

Dt
(r1; r2)

›x1›x2
�

›2Q
yx

Dt
(r1; r2)

›x1›y2

�
›2Q

xy

Dt
(r1; r2)

›y1›x2
1

›2Qxx
Dt(r1; r2)

›y1›y2

,

QDmDm(r1; r2) 5
›2Qxx

Dt(r1; r2)

›x1›x2
1

›2Q
xy

Dt
(r1; r2)

›x1›y2

1
›2Q

yx

Dt
(r1; r2)

›y1›x2
1

›2Q
yy

Dt
(r1; r2)

›y1›y2

,

QD§Dm(r1; r2) 5
›2Q

yx

Dt
(r1; r2)

›x1›x2
1

›2Q
yy

Dt
(r1; r2)

›x1›y2

� ›2Qxx
Dt(r1; r2)

›y1›x2
�

›2Q
xy

Dt
(r1; r2)

›y1›y2

, and

QDmD§(r1; r2) 5
›2Q

xy
Dt

(r1; r2)

›x1›x2
� ›2Qxx

Dt(r1; r2)

›x1›y2

1
›2Q

yy
Dt

(r1; r2)

›y1›x2
�

›2Q
yx
Dt

(r1; r2)

›y1›y2

. (B1)
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These equations correspond to the functional relation

in (26).

We now closely follow the discussion about the wind

error covariance in Daley (1991). For simplicity, we

assume that the stochastic processes only depend on the

two-dimensional spatial coordinates for the sea surface.

The wind stress error field can be related to the scalar

variables using the Helmholtz’s theorem as

Dtx 5 �›c

›y
1

›x

›x
and Dty 5

›c

›x
1

›x

›y
, (B2)

where c is the scalar potential that controls the rotational

component (curl) in the wind stress error and x is the

vector potential that controls its irrotational component

(divergence). Wind stress curl error D§ and wind stress

divergence error Dm can be recovered from c and x as

D§ 5 =2c and Dm 5 =2x, (B3)

where =2 [ ›2/›x2 1 ›2/›y2. From (B2), the components

of the covariance functions of the wind stress error can

be written in terms of covariance functions of the two

scalar variables c and x as

From (B3), the covariance functions of c and x are

Qcc(r1; r2) 5 =�2
1 =�2

2 QD§D§(r1; r2),

Qxx(r1; r2) 5 =�2
1 =�2

2 QDmDm(r1; r2),

Qcx(r1; r2) 5 =�2
1 =�2

2 QD§Dm(r1; r2), and

Qxc(r1; r2) 5 =�2
1 =�2

2 QDmD§(r1; r2). (B5)

Equations (B4) and (B5) establish the functional rela-

tionship in (27).

When we assume that Qcx 5 Qxc 5 0, (B4) indicates

that we can parameterize the wind stress error covari-

ance functions only by the two covariance functions,

Qcc and Qxx. Convolution between the wind stress er-

ror covariance and adjoint variables on the right-hand

side of (16) can be written in the continuous form asðð
QDt(r1; r2)l(r2) dr2

5

ðð
Qxx

Dt(r1; r2) Q
xy

Dt
(r1; r2)

Q
yx
Dt

(r1; r2) Q
yy
Dt

(r1; r2)

" #
lx

ly

� �
dr2, (B6)

where lx(y) is the adjoint variable. For simplicity, we

omit the time coordinate. With the assumptions that

Qcx 5 Qxc 5 0 in (B4), the convolution in (B6) can be

expressed in the relatively simple formulation

where

lc 5�
›ly

›x
1

›lx

›y
, lx 5�›lx

›x
�

›ly

›y
, (B8)

and we have assumed that Qcc(xx) / 0 as |r1 2 r2| / ‘.

Since the two convolutions on the right-hand side of

(B7) are univariate operations, they can be easily im-

plemented in the 4DVAR system when the covariances

Qcc and Qxx are modeled by the generalized diffusion

equation (Weaver and Courtier 2001). A similar scheme

was implemented by Vossepoel et al. (2004) in their

4DVAR system to adjust a wind stress error in their

equatorial Pacific Ocean circulation model.

Qxx
Dt(r1; r2) 5

›2Qcc(r1; r2)

›y1›y2

1
›2Qxx(r1; r2)

›x1›x2
�

›2Qcx(r1; r2)

›y1›x2
�

›2Qxc(r1; r2)

›x1›y2

,

Q
yy

Dt
(r1; r2) 5

›2Qcc(r1; r2)

›x1›x2
1

›2Qxx(r1; r2)

›y1›y2

1
›2Qcx(r1; r2)

›x1›y2

1
›2Qxc(r1; r2)

›y1›x2
,

Q
xy

Dt
(r1; r2) 5 �

›2Qcc(r1; r2)

›y1›x2
1

›2Qxx(r1; r2)

›x1›y2

�
›2Qcx(r1; r2)

›y1›y2

1
›2Qxc(r1; r2)

›x1›x2
, and

Q
yx

Dt
(r1; r2) 5 �

›2Qcc(r1; r2)

›x1›y2

1
›2Qxx(r1; r2)

›y1›x2
1

›2Qcx(r1; r2)

›x1›x2
�

›2Qxc(r1; r2)

›y1›y2

. (B4)

ðð
QDt(r1; r2)l(r2) dr2 5

� ›

›y1

›

›x1
›

›x1

›

›y1

2
664

3
775
ðð

Qcc(r1; r2)lc(r2) dr2ðð
Qxx(r1; r2)lx(r2) dr2

2
664

3
775, (B7)
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