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Predictability Studies

• Climate dynamics can be characterized as having two 

components:

• In diagnostic predictability studies the variability of the 
climate system is partitioned into these two components, 

→ potentially predictable variance fraction = σ2
Pred/σ2

Total

• Prognostic predictability studies look at rates of 

divergence from neighboring initial conditions

‘Signal’: dynamics deterministic, potentially predictable

‘Noise’ : dynamics random, unpredictable

“ppvf”
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II.2.1 Potential Predictability of Current and Future Climates

Potential predictability in a warmer world

• Consider B1/Stabilization Scenario

• Forcing stabilizes in 2100, consider 2150-2300

• 11 CMIP3 simulations

150 years

Forcing
stabilized
at 2100

• Remove long term 

adjustments by 
fitting low-order 

polynomial  

Global mean 

temperature

Boer, J. Climate accepted
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II.2.1 Potential Predictability of Current and Future Climates

Decadal potential predictability of 21st

Century climate

• Decadal climate variations are superimposed on 

warming trend

• Decompose variance as 

• B1 scenario 2001-2100  

• CMIP3 → 35 simulations/18 models

• Examine decadal forced and internal ppvf

Boer (2009) submitted

σ2 = σ2
Ω + σ2

ν + σ2
ε

externally forced 
component

internal variability 
component

“noise”

σ2
Ω / σ2 σ2

ν / σ2



Forced plus internal

2020-2030

2030-2040

2040-2050

→→→→ these predictabilities should characterize decadal forecasts* 
*to extent models are reliable



II.2.1 Potential Predictability of Current and Future Climates

Likelihood and predictability of cooling 

episodes in a warming climate

• Decadal forecasts from Kiel & Hadley Centre predict near-
term cooling, 

• How likely is it that the next N years will be cooler than the 

last N years?  → probability PN

• Approach:

- diagnose PN directly from CMIP3 output*:

- apply statistical models

W. Merryfield and Ajayamohan Ravindran

B1 :    20 models, 48 runs, 4800 years

A1B:  12 models, 12 runs,  1200 years

*courtesy S. Lambert



Relate cooling probability to mean trend, 

internal variability 

• Consider p(∆TN) for differences between successive N-
year means

• If p(∆TN) is Gaussian then  p ∝ exp -

• Cooling probability PN corresponds to probability of ∆TN< 0

∆ TN
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PN large where ∆∆∆∆TN small or σσσσN large

Relate cooling probability to mean trend, 

internal variability 



MultiMulti--model model PN (B1)(B1)

From (1)From (1)

N=5

N=10

Direct calculationDirect calculation



N=5

N=10

MultiMulti--model model PN (A1B)(A1B)MultiMulti--model model PN (B1)(B1)
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⇒⇒ rate of warming similar to B1, but less variability (rate of warming similar to B1, but less variability (espesp decadal)decadal)

Global mean T: Modeled Global mean T: Modeled vsvs ObservedObserved



II.2.1 Potential Predictability of Current and Future Climates

Regional impacts of air-sea coupling on climate 

variability and predictability

• Examine climate variability and potential predictability 
when atmosphere sees only climatological SSTs in 

specified regions:

• Ravindran afternoon talk…

Ajayamohan Ravindran, W. Merryfield,
S. Kharin, G. Boer



II.2.2 Prognostic Predictability from coupled model ensembles

• Aim: “perfect model” predictability experiment based on large 
(~100-member) ensemble of coupled model integrations 

• Take advantage of new initialization technique: incremental 
analysis updates (IAU):
- AGCM assimilates “central” model run for ~1 mon prior to fcst
- Forecast IC sample realistic atmosphere & ocean uncertainties

“central” model

trajectory 

ensemble

members

initialization forecast

t0t0- 1 month

AGCM

OGCM

arbitrary 

perturbations 

to AGCM
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“Days to decades”


