II.2.1 Potential Predictability of Current and **Future Climates**

II.2.2 Prognostic predictability from ensembles of coupled model simulations

Bill Merryfield CCCma

Canada

Environnement Environment Canada

Predictability Studies

 Climate dynamics can be characterized as having two components:

'Signal': dynamics *deterministic,* potentially predictable 'Noise' : dynamics *random*, unpredictable

- In *diagnostic* predictability studies the variability of the climate system is partitioned into these two components,
 → potentially predictable variance fraction = σ²_{Pred}/σ²_{Total}
- Prognostic predictability studies look at rates of divergence from neighboring initial conditions

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

"ppvf"

Predictability Studies

 Climate dynamics can be characterized as having two components:

'Signal': dynamics *deterministic,* potentially predictable 'Noise' : dynamics *random*, unpredictable

- In *diagnostic* predictability studies the variability of the climate system is partitioned into these two components,
 → potentially predictable variance fraction = σ²_{Pred}/σ²_{Total}
- Prognostic predictability studies look at rates of divergence from neighboring initial conditions
- Functions of time scale, region, climate variable...

"ppvf"

II.2.1 Potential Predictability of Current and Future Climates

Potential predictability in a warmer world

- Boer, J. Climate accepted Consider B1/Stabilization Scenario
- Forcing stabilizes in 2100, consider 2150-2300
- 11 CMIP3 simulations
- Remove long term adjustments by fitting low-order polynomial

Environnement

Decadal ppvf (%) for Temperature

Control simulation

B1 stabilization

<u> less</u> more <u>-2000</u> -1000 -500 -2000 <u> Difference in warmer world</u> nvironment Environnement

Where confidence bands *don't* overlap

Environment Environr Canada Canada

- **II.2.1** Potential Predictability of Current and Future Climates Decadal potential predictability of 21st <u>Century climate</u> Boer (2009) submitted
 - Decadal climate variations are superimposed on warming trend
 - Decompose variance as

- B1 scenario 2001-2100
- CMIP3 \rightarrow 35 simulations/18 models
- Examine decadal *forced* and *internal* ppvf

 σ^2_{0}/σ^2

Environment Environnement Canada

Canada

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

 σ^2 , σ^2

\rightarrow these predictabilities should characterize decadal forecasts*

*to extent models are reliable

Canada

Environnement Environment Canada

II.2.1 Potential Predictability of Current and Future Climates

Likelihood and predictability of cooling episodes in a warming climate

W. Merryfield and Ajayamohan Ravindran

- Decadal forecasts from Kiel & Hadley Centre predict nearterm *cooling*,
- How likely is it that the next N years will be cooler than the last N years? \rightarrow probability P_N
- Approach:
 - diagnose P_N directly from CMIP3 output*:

B1: 20 models, 48 runs, **4800 years** A1B: 12 models, 12 runs, **1200 years**

- apply statistical models

*courtesy S. Lambert

Environment Environnement Canada Canada

Relate cooling probability to mean trend, internal variability

 Consider p(ΔT_N) for *differences* between successive Nyear means

• If $p(\Delta T_N)$ is Gaussian then $p \propto \exp - \frac{(\Delta T_N - \overline{\Delta T_N})^2}{2\sigma_N^2}$ internal variability

• Cooling probability P_N corresponds to probability of $\Delta T_N < 0$

Relate cooling probability to mean trend, internal variability

 Consider p(ΔT_N) for *differences* between successive Nyear means

• If $p(\Delta T_N)$ is Gaussian then $p \propto \exp - \frac{(\Delta T_N - \overline{\Delta T_N})^2}{2\sigma_N^2}$ internal variability

• Cooling probability P_N corresponds to probability of $\Delta T_N < 0$

N=5

From (1)

Direct calculation

<u>Multi-model P_N (B1)</u>

Multi-model P_N (A1B)

Global mean T: Modeled vs Observed

		P _N	
Ν	$\overline{\Delta T_{N}}$	σ_{N}	(1)
5	0.081	0.081	15.8%
10	0.164	0.071	1.0%

	GISS		P _N from	HadCRUT3		P _N
Ν	$\overline{\Delta T}_{N}$	σ_{N}	(1)	$\overline{\Delta T}_{N}$	σ_{N}	(1)
5	0.079	0.046	4.3%	0.079	0.057	8.3%
10	0.159	0.011	0.0%	0.158	0.009	0.0%

 \Rightarrow rate of warming similar to B1, but less variability (esp decadal)

II.2.1 Potential Predictability of Current and Future Climates

Regional impacts of air-sea coupling on climate variability and predictability

Ajayamohan Ravindran, W. Merryfield, S. Kharin, G. Boer

Examine climate variability and potential predictability \bullet when atmosphere sees only *climatological* SSTs in specified regions:

Ravindran afternoon talk...

Canada

Environnement Environment Canada

II.2.2 Prognostic Predictability from coupled model ensembles

- Aim: "perfect model" predictability experiment based on large (~100-member) ensemble of coupled model integrations
- Take advantage of new initialization technique: incremental analysis updates (IAU):
 - AGCM assimilates "central" model run for ~1 mon prior to fcst
 - Forecast IC sample realistic atmosphere & ocean uncertainties

II.2.2 Prognostic Predictability from coupled model ensembles

- Aim: "perfect model" predictability experiment based on large (~100-member) ensemble of coupled model integrations
- Take advantage of new initialization technique: incremental analysis updates (IAU):
 - AGCM assimilates "central" model run for ~1 mon prior to fcst
 - Forecast IC sample realistic atmosphere & ocean uncertainties

