

Environment Environnement Canada

Theme II Overview

Bill Merryfield Canadian Centre for Climate Modelling and Analysis Environment Canada

GOAPP Science Day 2009 March 12 Victoria

Welcome to Victoria

Canada

Environnement Environment Canada

Welcome to Victoria

Canada

-60

-30

-90

Canada

Environnement Environment Canada

Seasons to Decades

- <u>Sub-Theme II.1 Analysis and Mechanisms</u> What are the origins of predictability?
- <u>Sub-Theme II.2 Predictability of the Coupled</u> <u>System</u>
 <u>What are the limits of predictability?</u>
- <u>Sub-Theme II.3 Prediction</u> *How well can we predict in practice?*
- <u>Sub-Theme II.4 Land surface initializtion</u> What is impact on prediction skill?

Sub-Theme II.1 Analysis and Mechanisms

- Northern Annular Mode Fyfe morning talk
- Pacific Decadal Oscillation in climate models
 - \rightarrow model biases
 - \rightarrow relation to ENSO

Lienert afternoon talk

Sub-Theme II.2 Predictability of the Coupled System

- Predictability in a warming world
- 21st century decadal predictability
- Likelihood and predictability of cooling episodes in a warming climate
- Regional impacts of air-sea coupling on climate variability and predictability
- Prognostic predictability of large ensembles
 - \rightarrow Merryfield/Tang morning talks
 - → Ravindran afternoon talk

nvironment Environnement anada Canada

Sub-Theme II.3 Prediction

- II.3.1 Coupled Model Initialization <- Flato morning talk

Deng afternoon talk

- II.3.2 The Coupled Model Historical **Forecasting Project**
- II.3.3 Forecast Combination, Calibration and Verification

Spectral nudging: A tie-in with Theme I

- Spectral nudging developed under Theme I suppresses
 OGCM biases wrt climatological mean and seasonal
 cycle while leaving variability on other bands unfettered
- In Theme I interesting variability = eddies
- In Theme II interesting variability is seasonal/interannual
- **Spectral nudging implemented in CCCma OGCM** in collaboration with Dan Wright (BIO) & Fred Dupont (Dal)
- Coupled test runs underway

Sub-Theme II.3 Prediction

- Flato morning talk - II.3.1 Coupled Model Initialization < Deng afternoon talk
- II.3.2 The Coupled Model Historical **Forecasting Project**
- II.3.3 Forecast Combination, Calibration and Verification

 \rightarrow Kharin morning talk

Finnis afternoon talk

Canada

The Coupled Model Historical Forecasting Project (CHFP)

- For forecast systems, libraries of *retrospective* forecasts are essential for
 - correcting forecast bias
 - assessing forecast skill from past performance

AGCM2

- guiding optimal calibration
- Previous and current EC operational systems based upon
 HFP: 2 AGCMs, persisted SSTA (ensemble size 6)
 - HFP2: 4 AGCMs, persisted SSTA (ensemble size 4×10)

nent Environnement Canada

The Coupled Model Historical Forecasting Project (CHFP)

- Under GOAPP, develop *coupled* forecast system \rightarrow *SSTA part of forecast*
- CHFP1: modest pilot project
- CHFP2: incorporate model + initialization + calibration improvements
 - → contribution to international CHFP ("Climate-system Historical Forecast Project") organized by Clivar Working Group on Seasonal to Interannual Prediction

CHFP Data Server (ensembles.ecmwf.int)

Catalog http://ensembles.ecmwf.int/thredds/ensembles/stream1/atmospheric/monthly

Dataset	Size Last Modified
Geopotential	85
Air temperature	
Zonal wind positive to the east	
Meridional wind positive to the north	
Mass fraction of water vapor in moist air	5.7
SST over sea, soil temperature over land and ice temperature over sea ice	
Snow depth in metres of water equivalent	
Heat exchange between the surface and the air by motion of air	
Heat exchange between the surface and the air by water phase changes	5.7
Mean sea-level pressure	
Cloud area fraction for the whole atmosphere column	
10-metre zonal wind positive to the east	
10-metre meridional wind positive to the north	55
2-metre temperature	
2-metre dewpoint temperature	
Solar radiation incident at the surface	
Longwave radiation incident at the surface	5.5
Difference of solar radiation from above and from below at the surface	
Difference of longwave radiation from above and from below at the surface	
Difference of solar radiation from above and from below at the top of the atmosphere	
Difference of longwave radiation from above and from below at the top of the atmosphere	5.5
Near-surface maximum temperature in the previous 24 hours computed from 6-hourly (6, 12, 18 and 24 GMT) data	••
Near-surface minimum temperature in the previous 24 hours computed from 6-hourly (6, 12, 18 and 24 GMT) data	
Total precipitation accumulated in the previous 24 hours	

Canada

Environment Canada

nt Environnement Canada

Environment Environnement Canada Canada

Forecast model configurations

- OGCM4: higher vertical resolution (10m in upper ocean), new physics
- AGCM4: many new physical parameterizations, prognostic aerosols...
- Same horizontal resolution (≈ 2.8°×2.8° AGCM, 1.4°lon×0.9°lat OGCM)

 Potential for improved prediction skill exemplified by "hit" for 11-month lead prediction of 1982/83 El Nino:

• While such outcomes not always possible (even in theory), a *strong* El Nino is now within the range of possibilities admitted by the model

Canada

Environment Environnement Canada Canada

Ocean Initialization by multi-analysis assimilation

- Experiment: compare NINO3.4 skill and ensemble spread for three ensemble initialization strategies:
 - Multi-analysis: off-line assimilation of 6 ocean analysis products (same atm)
 - Exp atmos: 6 AGCM states from consecutive days prior to forecast start (same ocn)
 - Exp ocean: 6 OGCM states from consecutive days prior to forecast start (same ocn)

	MULTI-ANALYSIS							EXP_ATMOS						EXP_OCEAN					
Ensemble member	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	
Atmosphere Initial State	8/31							8/ 30	8/ 29	8/ 28	8/ 27	8/ 26	8/31						
Ocean Initial state	8/31						8/31						8/ 31	8/ 30	8/ 29	8/ 28	8/ 27	8/ 26	
Used Reanalysis Data for ocean assimilation	GODAS	ECMWF	GFDL	SODA	INGV	METUK	GODAS						GODAS						

1980-2001: 22 years of Sep 1—initialized forecasts

Canada

Environnement nvironment Canada

NINO3.4 skill and ensemble spread

SST Forecast Skill

• Larger ensemble spread in first two months

Environnement Environment Canada

Canada

Importance of radiative forcing for Seasonal Forecasts

Impact of radiative forcing trend on forecast skill

CHFP1: Temperature at 850hPa (T850) Anomaly Correlation

Environment Canada Canada

Centre canadien de la modélisation et l'analyse climatique

Canadian Centre for Climate Modelling and Analysis Centre canadien de la modélisation et l'analyse climatique

Decadal forecasts

10 years

CHFP2 potential contributions

Conclusions

- Several aspects of Theme II as originally proposed are being exceeded. These include
 - multimodel CHFP
 - initialization of AGCM/sea ice/land surface/ocean S
- CHFP2 must start soon
 - techniques and technologies that are ready and have been sufficiently tested will be incorporated
 - research will continue on effectiveness of others

Jan mixed layer depth

Jul mixed layer depth

Observations: WOA/PHC

AGCM3+OGCM3

125.150.175.200.225 Canada

_25....59....75....100 Canada

AGCM3+OGCM4

AGCM4+OGCM4

Centre canadien de la modélisation et l'analyse climatique

