Ocean Multivariate Data Assimilation in GOAPP

Theme I.1.3

Plans and Preliminary Work

Entcho Demirov Keith Thompson Mike Forman Memorial University Dalhousie University University of Victoria and Fisheries and Oceans Canada

Funded by the Canadian Foundation for Climate and Atmospheric Sciences

Objectives for project I.1.3

- Determine the means and error covariance structure of the altimeter and Argo data to be assimilated into the global ocean and basin models using 3DVar
- Test and compare performance of new assimilation schemes for altimeter and Argo profile data

Milestones for year 1

(i) Calculate the background error covariance auxiliary variables (ξ_D, ξ_T, ξ_S) using the ¼ degree North Atlantic ocean model developed in project I.1.2

(ii) Test and compare performance of new assimilation schemes for altimeter and Argo profile data using the new auxiliary variable- based scheme

Reduced Order Kalman Filter

- Forecast: $x_{i+1}^{f} = M(x_{i}^{a})$ $P_{i+1}^{f} = M P_{i}^{a} M^{T} + Q$ Analysis: $K_{i+1} = P_{i+1}^{f} H^{T} (H P_{i+1}^{f} H^{T} + R)^{-1}$ $x_{i+1}^{a} = x_{i+1}^{f} + K_{i+1} (y_{i+1} - H x_{i+1}^{f})$ $P_{i+1}^{a} = (I - K_{i+1} H) P_{i+1}^{f}$
- Covariance matrix $P = L \wedge L^T$
- Error subspace S_o≈ L (Λ)^{1/2}, P=S_oS_o^T

Milestones for year 1

- Calculate the background error covariance auxiliary variables (ξ_D, ξ_T, ξ_S) using the ¼ degree North Atlantic ocean model developed in project I.1.2
- Test and compare performance of new assimilation schemes for altimeter and Argo profile data using the new auxiliary variable- based scheme

Milestones for year 1

 (iii) Implement the SEEK (Singular Evolutive Extended Kalman) filter for the North Atlantic. Calculate the background error covariance auxiliary variables (ξ_D,ξ_T,ξ_S) using the ¼ degree North Atlantic ocean model developed in project I.1.2

Preliminary work (model setup)

- The OPA code is implemented in MUN for the North Atlantic Ocean. This model will be used in DAL and MUN for initial implementation an test of the assimilation scheme.
- T. Wakamatsu has set up a North Pacific regional model based on NEMO. The model is being tested on the IBM multiprocessor computer at DFO's Institute of Ocean Sciences.

Preliminary work (data collection and quality control)

- Observations for data assimilation into the North Atlantic Model have been collected by Y. Liu at DAL. The ARGO vertical profile data and along - track altimetry measurements cover the 1997 – 2006 and 1992 – 2006 respectively.
- Quality control was applied to ARGO data at DAL. Along-track data of different satellites were merged and Lagrangian optimal interpolation was used to interpolate the ARGO data to standard times

Preliminary work (data assimilation)

- Simple OI was used to make monthly mean maps of ARGO T&S and ssh. These fields will be used to remove bias in the assimilation schemes.
- Preliminary estimates of the observation and model error statistics, such as time and spatial decorrelation scales, have been estimated for temperature, sailinity and sea surface height for the North Atlantic.

Preliminary work (data assimilation)

 The method has been implemented in a 1/3 degree model of the North Atlantic based on the POP model at DAL. (This model was developed under a CFCAS project grant that immediately preceded the GOAPP network grant.)

 Work on implementation of SEEK filter started in MUN